forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpeephole.cpp
1073 lines (974 loc) · 37.8 KB
/
peephole.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include <torch/csrc/jit/passes/onnx/peephole.h>
#include <c10/util/Exception.h>
#include <c10/util/irange.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/passes/dead_code_elimination.h>
#include <torch/csrc/jit/passes/onnx/helper.h>
#include <ATen/ScalarOps.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#include <ATen/NativeFunctions.h>
#else
#include <ATen/ops/full.h>
#include <ATen/ops/ones_like_native.h>
#endif
#include <c10/util/Optional.h>
#if defined(_MSC_VER)
#include <BaseTsd.h>
typedef SSIZE_T ssize_t;
#endif
namespace torch {
namespace jit {
namespace onnx {
using namespace ::c10::onnx;
}
bool isRNN(const Node* node) {
auto k = node->kind();
return k == onnx::RNN || k == onnx::LSTM || k == onnx::GRU;
}
bool isNopTranspose(const std::vector<int64_t>& perm) {
for (int64_t i = 0, perm_size = perm.size(); i < perm_size; i++) {
if (perm[i] != i) {
return false;
}
}
return true;
}
// returns a vector `ret` such that transposing by `ret` is equivalent
// to transposing by `t1` and then by `t2`
//
// This fires in the case that we have transpose ops T1 -> T2. We are
// fusing the transpose op T1 into T2 and discarding T1. We assume the elements
// of the permutation in `t1` are raw indices into its input, since a previous
// iteration would have folded all the transposes up to that point. Thus,
// `ret[i] = t1[t2[i]]` says "the output of t2 at position i takes the value of
// the input tensor index contained in t1 at position `t2[i]``".
std::vector<int64_t> composeTransposes(
const std::vector<int64_t>& t1,
const std::vector<int64_t>& t2) {
TORCH_INTERNAL_ASSERT(t1.size() == t2.size());
std::vector<int64_t> ret;
ret.reserve(t1.size());
for (const auto& i : t2) {
TORCH_INTERNAL_ASSERT(i < int64_t(t1.size()));
ret.push_back(t1[i]);
}
return ret;
}
std::vector<size_t> getBroadcastPositions(Node* node) {
// Most of the element-wise ops in ONNX supports numpy broadcasting.
// Only GEMM supports one-directional broadcasting, which broadcasts the bias
// to the product.
static std::unordered_map<NodeKind, std::vector<size_t>> broadcast_positions =
{
{onnx::Add, {0, 1}},
{onnx::Div, {0, 1}},
{onnx::Mul, {0, 1}},
{onnx::Pow, {0, 1}},
{onnx::Sub, {0, 1}},
{onnx::Gemm, {2}},
{onnx::Equal, {0, 1}},
{onnx::Greater, {0, 1}},
{onnx::Less, {0, 1}},
};
static std::vector<size_t> no_positions;
std::vector<size_t> positions;
auto iter = broadcast_positions.find(node->kind());
if (iter != broadcast_positions.end()) {
// skip optional input if not provided
for (size_t position : iter->second) {
if (position < node->inputs().size()) {
positions.emplace_back(position);
}
}
return positions;
}
return no_positions;
}
// Determine whether `from` can broadcast to `to`, and if so at which
// position. `from` must be a suffix of `to`, except that any
// occurrences of 1 in `from` are treated as wildcards.
std::optional<size_t> fusibleExpandTo(
at::IntArrayRef from,
at::IntArrayRef to) {
if (from.size() > to.size()) {
return c10::nullopt;
}
for (const auto i : c10::irange(from.size())) {
auto fdim = from[from.size() - 1 - i];
auto tdim = to[to.size() - 1 - i];
if (fdim != 1 && fdim != tdim) {
return c10::nullopt;
}
}
return to.size() - from.size();
}
// Fuses expand calls into ONNX operators, because it is
// easier for non-strided backends to more efficiently do broadcasts if this
// is local information. This optimization is not useful for PyTorch as
// 'expand' is free.
void fuseBroadcast(Block* b) {
for (auto n : b->nodes()) {
for (auto* child_block : n->blocks()) {
fuseBroadcast(child_block);
}
auto broadcast_positions = getBroadcastPositions(n);
if (!broadcast_positions.empty()) {
TORCH_INTERNAL_ASSERT(!n->hasAttribute(attr::axis));
}
for (size_t position : broadcast_positions) {
auto* expand_node = n->input(position)->node();
// Confirm it is expand node.
if (expand_node->kind() != aten::expand ||
expand_node->input(1)->node()->kind() != onnx::Constant ||
expand_node->input(2)->node()->kind() != onnx::Constant) {
continue;
}
auto* unexpanded_input = expand_node->input(0);
// We need to know what the type pre-expand is. We should basically
// always have this information (because expands are only ever traced,
// not generated from symbolic), but if for some reason we don't
// have it, we need to skip.
if (!unexpanded_input->isCompleteTensor() ||
!n->output()->isCompleteTensor()) {
continue;
}
// Not all broadcasts are supported by ONNX broadcast.
std::optional<size_t> axis = fusibleExpandTo(
unexpanded_input->type()
->expectRef<TensorType>()
.sizes()
.concrete_sizes()
.value(), // from
n->output()
->type()
->expectRef<TensorType>()
.sizes()
.concrete_sizes()
.value()); // to
if (axis == c10::nullopt) {
continue;
}
n->replaceInput(position, unexpanded_input);
if (!expand_node->hasUses()) {
expand_node->destroy();
}
}
}
}
void fuseConsecutiveTransposes(Block* b) {
for (auto n : b->nodes()) {
for (auto* child_block : n->blocks()) {
fuseConsecutiveTransposes(child_block);
}
if (n->kind() == onnx::Transpose &&
n->input()->node()->kind() == onnx::Transpose &&
n->owningBlock() == n->input()->node()->owningBlock()) {
auto origInput = n->input();
n->is_(
attr::perm,
composeTransposes(
origInput->node()->is(attr::perm), n->is(attr::perm)));
n->replaceInput(0, origInput->node()->input());
if (origInput->uses().empty()) {
origInput->node()->destroy();
}
continue;
}
}
}
void eliminateNopTranspose(Block* b) {
for (auto it = b->nodes().begin(), end = b->nodes().end(); it != end; ++it) {
auto n = *it;
for (auto* child_block : n->blocks()) {
eliminateNopTranspose(child_block);
}
if (n->kind() == onnx::Transpose) {
if (isNopTranspose(n->is(attr::perm))) {
n->output()->replaceAllUsesWith(n->input());
it.destroyCurrent();
continue;
}
}
}
}
void fuseTransposeIntoGemm(Block* b) {
static const std::vector<int64_t> simpleTransPerm({1, 0});
for (auto n : b->nodes()) {
for (auto* child_block : n->blocks()) {
fuseTransposeIntoGemm(child_block);
}
if (n->kind() == onnx::Gemm) {
for (size_t i : {0, 1}) {
auto inp = n->inputs()[i];
auto trans = i == 0 ? attr::transA : attr::transB;
if (inp->node()->kind() == onnx::Transpose &&
inp->node()->is(attr::perm) == simpleTransPerm) {
n->replaceInput(i, inp->node()->input());
n->i_(trans, n->hasAttribute(trans) ? !n->i(trans) : 1);
if (inp->uses().empty()) {
inp->node()->destroy();
}
}
}
}
}
}
// Why this is here:
//
// Pytorch has a "packed" representation of sequences, as well as a
// "padded" representation. ONNX has only one representation,
// corresponding to pytorch's "padded". Therefore, we need to remove
// any use of packed sequences before exporting.
//
// What this does:
//
// This code uses the observation that
// RNN(PackPadded(x)) == PackPadded(RNN(x))
// and converts the first form to the second whenever possible,
// "pushing" the packing operation past the RNN operation. Then,
// the removeNopPacking pass removes the packing operations
// entirely by pairing them with their inverse PadPacked. If the
// input graph does not pair the operations, export will fail.
void pushPackingPastRnn(Block* b) {
for (auto it = b->nodes().begin(); it != b->nodes().end(); ++it) {
auto* n = *it;
for (auto* child_block : n->blocks()) {
pushPackingPastRnn(child_block);
}
if (n->kind() != prim::PackPadded) {
continue;
}
if (n->outputs().at(0)->uses().size() != 1) {
// For now, only handle the case where there is one consumer.
continue;
}
Node* rnn = n->outputs()[0]->uses()[0].user;
if (!isRNN(rnn)) {
continue;
}
if (rnn->owningBlock() != n->owningBlock()) {
continue;
}
// Packing only has an effect on a network when its outputs are actually
// used, so we can remove it here.
if (rnn->outputs().at(0)->uses().empty() &&
n->outputs().at(1)->uses().size() == 1) {
n->outputs().at(0)->replaceAllUsesWith(n->inputs().at(0));
n->outputs().at(1)->replaceFirstUseWith(n->inputs().at(1));
it.destroyCurrent();
continue;
}
// The rnn is followed by a transpose and a reshape (if
// bidirectional), or by a squeeze (if unidirectional).
Node* next = rnn->outputs().at(0)->uses().at(0).user;
if (next->kind() == onnx::Transpose) {
next = next->outputs().at(0)->uses().at(0).user;
if (next->kind() != onnx::Reshape) {
continue;
}
} else if (next->kind() != onnx::Squeeze) {
continue;
}
// remove PackPadded from in front of the RNN
n->outputs().at(0)->replaceAllUsesWith(n->inputs().at(0));
Value* batch_sizes = n->outputs().at(1);
while (!batch_sizes->uses().empty()) {
Use use_0 = batch_sizes->uses().at(0);
Node* user = use_0.user;
// Make calculation of max_batch_size not depend on batch_sizes.
// This looks for a pattern generated by code such as
// https://github.com/pytorch/pytorch/blob/febff45/torch/nn/modules/rnn.py#L815-L815.
//
// Replace onnx::Gather[axis=0](batch_sizes, 0)
// with onnx::Gather[axis=0](onnx::Shape(rnn_input), 1)
if (use_0.offset == 0 && user->kind() == onnx::Gather &&
user->i(attr::axis) == 0 &&
user->inputs().at(1)->node()->kind() == onnx::Constant &&
user->inputs().at(1)->node()->hasAttribute(attr::value)) {
const at::Tensor& const_val_t =
user->inputs().at(1)->node()->t(attr::value);
if (const_val_t.item().toInt() != 0) {
// We'll likely produce an invalid graph if this happens.
break;
}
Value* rnn_input = rnn->inputs().at(0);
Node* shape = b->owningGraph()->create(onnx::Shape);
shape->insertAfter(rnn_input->node());
shape->addInput(rnn_input);
shape->copyMetadata(n);
batch_sizes->replaceFirstUseWith(shape->output());
// New Constant node is needed, as it might be shared
// with a Constant node 0 from others.
Node* gather_indices = b->owningGraph()->create(onnx::Constant, 1);
gather_indices->t_(attr::value, at::native::ones_like(const_val_t));
gather_indices->copyMetadata(n);
gather_indices->insertBefore(user);
user->replaceInput(1, gather_indices->output());
}
// Make RNN not depend on batch_sizes.
else if (user == rnn) {
batch_sizes->replaceFirstUseWith(n->inputs().at(1));
} else {
// If there are other uses that are not:
// * PadPacked (which will be removed in removeNopPacking),
// * Dead code (which will be removed in dead code elimination),
// then we likely have produced an invalid graph, since there will be a
// use of the output of PackPadded, but the PackPadded (and that output)
// will be removed.
break;
}
}
// and insert new PackPadded after the RNN
Node* newPackPadded = b->owningGraph()->create(prim::PackPadded, 2);
newPackPadded->copyMetadata(n);
newPackPadded->insertAfter(next);
newPackPadded->copyMetadata(next);
// make things consume from the new PackPadded
next->outputs().at(0)->replaceAllUsesWith(newPackPadded->outputs().at(0));
n->outputs().at(1)->replaceAllUsesWith(newPackPadded->outputs().at(1));
// set up the new PackPadded's inputs
newPackPadded->addInput(next->outputs().at(0));
newPackPadded->addInput(n->inputs().at(1));
// See https://github.com/pytorch/pytorch/issues/9043 for a full
// description. Since PackPadded is for now treated in an
// unhygenic way, Pytorch ends up propagating an incorrect type.
// Until a long-term cleanup comes around, we can fix this by
// resetting the size to the correct value.
TensorTypePtr oldType = rnn->inputs().at(0)->type()->cast<TensorType>();
if (oldType && oldType->isComplete()) {
std::vector<int64_t> new_sizes;
new_sizes.push_back(*oldType->sizes()[0]);
new_sizes.push_back(*oldType->sizes()[1]);
if (next->kind() == onnx::Reshape) {
// bidirection
new_sizes.push_back(rnn->i(attr::hidden_size) * 2);
} else {
// unidirection
new_sizes.push_back(rnn->i(attr::hidden_size));
}
TensorTypePtr newType = TensorType::createContiguous(
*oldType->scalarType(), *oldType->device(), new_sizes);
next->outputs().at(0)->setType(newType);
}
it.destroyCurrent();
}
}
// Despite the name, this actually removes the PadPacked node and leaves
// the PackPadded node. The PackPadded should become dead code which will
// be eliminated later.
void removeNopPacking(Block* graph) {
for (auto it = graph->nodes().begin(); it != graph->nodes().end(); ++it) {
auto* n = *it;
for (auto* child_block : n->blocks()) {
removeNopPacking(child_block);
}
if (n->kind() != prim::PadPacked) {
continue;
}
Node* input = n->inputs()[0]->node();
if (input->kind() != prim::PackPadded) {
continue;
}
if (input->outputs()[0] != n->inputs()[0]) {
continue;
}
if (input->outputs()[1] != n->inputs()[1]) {
continue;
}
n->outputs()[0]->replaceAllUsesWith(input->inputs()[0]);
n->outputs()[1]->replaceAllUsesWith(input->inputs()[1]);
n->removeAllInputs();
it.destroyCurrent();
}
}
void hackFixupPadPackedShapes(Block* graph) {
// FIXME: the shape of the input to the fictional PadPacked node has
// incorrect shape. For now, just copy the shape of PadPacked to the shape
// of its input.
for (auto it = graph->nodes().begin(); it != graph->nodes().end(); ++it) {
auto* n = *it;
for (auto* child_block : n->blocks()) {
removeNopPacking(child_block);
}
if (n->kind() != prim::PadPacked) {
continue;
}
Node* input = n->inputs()[0]->node();
input->outputs()[0]->setType(n->outputs()[0]->type());
}
}
void fixDefaultRNNState(
Graph* graph,
Node* n,
int input_index,
int opset_version) {
auto initial_state = n->inputs()[input_index];
// The RNN code in pytorch accepts an optional hidden state.
// 1- When it is provided as an input, everything works great.
// 2- When it is not provided, it is default-initialized by constructing a new
// Variable, which gets
// traced as a ConstantOfShape with the expected Shape.
// 3- When the batch size is fixed, everything works great as well.
// 4- When h0 and c0 are specified but are not inputs of the model (they are
// Constants) and the batch size is variable, the model should be saved
// with a batch size of 1 (or an error will occur), and we save the value
// of h0 and c0 with a batch size of 1. When the model is then called with
// a different batch size value, h0 and c0 are broadcasted to get the right
// shape.
// Recognize that last pattern here (4) and fix the shape.
// Note that for multi-layer RNNs there will be a Slice operation between the
// Constant and the RNN.
bool needsFixing = initial_state->node()->kind() == onnx::Constant ||
(initial_state->node()->kind() == onnx::Slice &&
initial_state->node()->inputs()[0]->node()->kind() == onnx::Constant);
if (!needsFixing) {
return;
}
Node* shape_of_input = graph->create(onnx::Shape, 1);
shape_of_input->copyMetadata(n);
shape_of_input->insertBefore(n);
shape_of_input->addInput(n->inputs()[0]);
Node* gather_indices = graph->create(onnx::Constant, 1);
gather_indices->copyMetadata(n);
gather_indices->insertBefore(n);
gather_indices->t_(attr::value, at::scalar_to_tensor(at::Scalar(1)));
Node* batch_size = graph->create(onnx::Gather, 1);
batch_size->copyMetadata(n);
batch_size->insertBefore(n);
batch_size->addInput(shape_of_input->outputs()[0]);
batch_size->addInput(gather_indices->outputs()[0]);
Node* unsqueezed_batch_size =
createONNXUnsqueeze(graph, n, batch_size->outputs()[0], 0, opset_version);
Node* hidden_size = graph->create(onnx::Constant, 1);
hidden_size->copyMetadata(n);
hidden_size->insertBefore(n);
hidden_size->t_(
attr::value,
at::full(
{1},
n->i(attr::hidden_size),
at::kLong)); // at::Scalar(n->i(attr::hidden_size)).toTensor());
Node* num_directions = graph->create(onnx::Constant, 1);
num_directions->copyMetadata(n);
num_directions->insertBefore(n);
num_directions->t_(
attr::value,
scalar_to_tensor(at::Scalar(
n->hasAttribute(attr::direction) &&
n->s(attr::direction) == "bidirectional"
? 2
: 1)));
Node* unsqueezed_num_directions = createONNXUnsqueeze(
graph, n, num_directions->outputs()[0], 0, opset_version);
Node* concated_dims = graph->create(onnx::Concat, 1);
concated_dims->copyMetadata(n);
concated_dims->insertBefore(n);
concated_dims->i_(attr::axis, 0);
concated_dims->addInput(unsqueezed_num_directions->outputs()[0]);
concated_dims->addInput(unsqueezed_batch_size->outputs()[0]);
concated_dims->addInput(hidden_size->outputs()[0]);
Node* fixed_init_state = graph->create(onnx::Expand, 1);
fixed_init_state->copyMetadata(n);
fixed_init_state->insertBefore(n);
fixed_init_state->addInput(initial_state);
fixed_init_state->addInput(concated_dims->outputs()[0]);
n->replaceInput(input_index, fixed_init_state->outputs()[0]);
if (initial_state->uses().empty()) {
initial_state->node()->destroy();
}
}
void fixDefaultRnnHiddenState(Block* b, int opset_version) {
for (auto it = b->nodes().begin(); it != b->nodes().end(); ++it) {
auto* n = *it;
for (auto* child_block : n->blocks()) {
fixDefaultRnnHiddenState(child_block, opset_version);
}
if (!isRNN(n)) {
continue;
}
// Hidden state is the sixth input for RNN, LSTM, GRU.
// See https://pytorch.org/docs/main/nn.html#torch.nn.RNN
if (n->inputs().size() < 6) {
continue;
}
fixDefaultRNNState(b->owningGraph(), n, 5, opset_version);
}
}
void fixDefaultLstmCellState(Block* b, int opset_version) {
for (auto it = b->nodes().begin(); it != b->nodes().end(); ++it) {
auto* n = *it;
for (auto* child_block : n->blocks()) {
fixDefaultLstmCellState(child_block, opset_version);
}
if (n->kind() != onnx::LSTM) {
continue;
}
// Cell state is the seventh input for LSTM.
// See https://pytorch.org/docs/main/nn.html#torch.nn.LSTM
if (n->inputs().size() < 7) {
continue;
}
fixDefaultRNNState(b->owningGraph(), n, 6, opset_version);
}
}
static bool isSafeToSpeculate(Node* n) {
return n->kind() == onnx::Transpose;
}
// Moves ops outside of control flow blocks so that they are always executed,
// no matter the result of the control flow conditions.
// Needed only so that the split pass of the ONNX optimizer will put the ops
// into the init_net.
// TODO: Once the code in caffe2/python/onnx/backend.py no longer calls
// optimize_onnx, delete this function.
static void speculateOps(Block* block) {
for (auto it = block->nodes().begin(), end = block->nodes().end();
it != end;) {
Node* n = *it;
++it; // note: increment first so that it is safe to move the node if needed
for (auto b : n->blocks()) {
speculateOps(b);
}
if (!isSafeToSpeculate(n)) {
continue;
}
// XXX - only works for nodes with a single input
// move node n outside of the control flow it is nested in
auto node_input = n->input()->node();
if (node_input->owningBlock() == n->owningBlock()) {
continue;
}
// Skip if output of this node is part of block output.
bool is_block_output = false;
for (auto node_output : n->outputs()) {
for (auto node_output_use : node_output->uses()) {
if (node_output_use.user == n->owningBlock()->return_node()) {
is_block_output = true;
break;
}
}
if (is_block_output) {
break;
}
}
if (is_block_output) {
continue;
}
// find the control flow node in the same block as node_input that contains
// Node n
auto control_flow_node = n->owningBlock()->owningNode();
while (control_flow_node->owningBlock() != node_input->owningBlock()) {
control_flow_node = control_flow_node->owningBlock()->owningNode();
}
// put the node right before this flow node
n->moveBefore(control_flow_node);
}
}
static void replaceInputWithList(Node* node, size_t i, ArrayRef<Value*> to) {
node->removeInput(i);
for (auto* to_val : to) {
TORCH_INTERNAL_ASSERT(to_val->owningGraph() == node->owningGraph());
node->insertInput(i++, to_val);
}
}
static void eraseListConstruct(Block* block, int opset_version);
static void eraseListConstruct(Node* n, int opset_version) {
for (auto b : n->blocks()) {
eraseListConstruct(b, opset_version);
}
std::vector<std::tuple<size_t, std::vector<Value*>>> replacements;
auto block = n->owningBlock();
size_t i = 0;
for (auto* input : n->inputs()) {
if (input->node()->kind() == prim::ListConstruct) {
auto* lc_node = input->node();
TypePtr elem =
lc_node->output()->type()->castRaw<ListType>()->getElementType();
if (elem->cast<IntType>() &&
isValidToTransformToONNXConcatNode(lc_node)) {
auto concat_node = transformToONNXConcatNode(
block->owningGraph(), input->node(), false, opset_version);
concat_node->copyMetadata(n);
// make concat node output as new input, then ListConstruct should
// become dead
replacements.emplace_back(
i, std::vector<Value*>({concat_node->output()}));
} else {
if (opset_version >= OPSET_VERSION_11) {
c10::Symbol seq_node_kind = !lc_node->inputs().empty()
? onnx::SequenceConstruct
: onnx::SequenceEmpty;
Node* seq_node = block->owningGraph()->create(
seq_node_kind, {lc_node->inputs()}, 1);
seq_node->copyMetadata(n);
seq_node->insertBefore(lc_node);
seq_node->output()->copyMetadata(lc_node->output());
seq_node->copyMetadata(lc_node);
lc_node->replaceAllUsesWith(seq_node);
}
}
}
i++;
}
for (auto ritr = replacements.rbegin(); ritr != replacements.rend(); ++ritr) {
replaceInputWithList(n, std::get<0>(*ritr), std::get<1>(*ritr));
}
}
static void eraseListConstruct(Block* block, int opset_version) {
// TODO: Fix this pass/maybe get rid of this part.
// Tensor lists might be used for meshgrid and such ops as well.
for (auto it = block->nodes().begin(), end = block->nodes().end();
it != end;) {
Node* n = *it;
++it;
eraseListConstruct(n, opset_version);
}
eraseListConstruct(block->return_node(), opset_version);
}
static void eraseListUnpack(Block* block, int opset_version);
// Replace prim::ListUnpack with onnx::SequenceAt.
static void eraseListUnpack(Node* n, int opset_version) {
for (auto b : n->blocks()) {
eraseListUnpack(b, opset_version);
}
if (n->kind() == prim::ListUnpack) {
if (opset_version < OPSET_VERSION_11) {
// onnx::SequenceAt was introduced in onnx opset version 11
throw std::runtime_error(
"Unsupported: ONNX export of prim::ListUnpack in opset " +
c10::to_string(opset_version) + ". Please try opset version 11.");
}
auto g = n->owningGraph();
for (size_t i = 0; i < n->outputs().size(); ++i) {
auto seq_idx_n = g->create(onnx::Constant, 1);
seq_idx_n->t_(attr::value, at::scalar_to_tensor(at::Scalar(int64_t(i))));
seq_idx_n->insertBefore(n);
auto seq_at_n = g->create(onnx::SequenceAt, 1);
seq_at_n->addInput(n->input());
seq_at_n->addInput(seq_idx_n->output());
seq_at_n->output()->setType(n->output(i)->type());
seq_at_n->insertBefore(n);
seq_at_n->copyMetadata(n);
n->output(i)->replaceAllUsesWith(seq_at_n->output());
}
}
}
static void eraseListUnpack(Block* block, int opset_version) {
for (auto it = block->nodes().begin(), end = block->nodes().end();
it != end;) {
Node* n = *it;
++it;
eraseListUnpack(n, opset_version);
}
}
// From:
// %list = ListConstruct(%x);
// %unpacked = ListUnpack(%list);
// do_something(%unpacked);
//
// To:
// %list = ListConstruct(%x);
// %unpacked = ListUnpack(%list);
// do_something(%x)
//
// The ListConstruct and ListUnpack may now be dead code.
static void fuseListConstructListUnpack(Block* b) {
for (auto it = b->nodes().begin(), end = b->nodes().end(); it != end; ++it) {
for (auto* child_block : it->blocks()) {
fuseListConstructListUnpack(child_block);
}
if (it->kind() == prim::ListUnpack &&
it->input()->node()->kind() == prim::ListConstruct) {
for (const auto i : c10::irange(it->outputs().size())) {
auto output = it->outputs().at(i);
output->replaceAllUsesWith(it->input()->node()->inputs().at(i));
}
}
}
}
// https://github.com/pytorch/pytorch/wiki/PyTorch-ONNX-exporter#quantized-model-export
static void eraseTupleConstruct(Block* block) {
std::vector<Value*> new_block_outputs;
bool found_tuple_construct = false;
// TupleConstruct is generated from the symbolics in quantized domain, and
// consumed by other quantized operators. The remained TupleConstruct should
// be at the output of the blocks.
for (auto* output : block->outputs()) {
auto output_node = output->node();
if (output_node->kind() == prim::TupleConstruct) {
found_tuple_construct = true;
for (auto* input : output_node->inputs()) {
new_block_outputs.emplace_back(input);
}
} else {
new_block_outputs.emplace_back(output);
}
}
if (found_tuple_construct) {
block->removeAllOutputs();
for (auto* output : new_block_outputs) {
block->registerOutput(output);
}
}
}
void removeMaxPoolUnusedOutput(Block* b) {
for (auto it = b->nodes().begin(), end = b->nodes().end(); it != end; ++it) {
auto n = *it;
for (auto* child_block : n->blocks()) {
removeMaxPoolUnusedOutput(child_block);
}
if (strcmp(n->kind().toQualString(), "onnx::MaxPool") == 0) {
if (n->outputs().size() == 2 && n->outputs().at(1)->uses().empty()) {
it->eraseOutput(1);
}
}
}
}
// This optimization fuses LogSoftmax and NegativeLogLikelihoodLoss operators
// into one operator: SoftmaxCrossEntropyLoss, and depending on the dimensions
// of the input and different attributes there will be different subgraphs of
// LogSoftmax and NegativeLogLikelihoodLoss.
static void fuseLogSoftmaxNllLoss(Block* b) {
for (auto it = b->nodes().begin(), end = b->nodes().end(); it != end; ++it) {
for (auto* child_block : it->blocks()) {
fuseLogSoftmaxNllLoss(child_block);
}
if (it->kind() == onnx::NegativeLogLikelihoodLoss) {
auto prev = it->input(0)->node();
Node* origNllLossNode = *it;
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
Node* origLogSoftmaxNode;
// Check for patterns especially in cases with autocasting enabled
// in which a cast node is inserted before the NegativeLogLikelihoodLoss
// node and this causes the patterns below not to be recognizable by the
// fuseLogSoftmaxNllLoss function
// For example if the input is 2D
// graph(%input : Half(3, 5),
// %target : Long(3)):
// %4 : Half(3, 5) = onnx::LogSoftmaxaxis=1
// %8 : Float = onnx::Cast[to=1](%4)
// %9 : Float(3) = onnx::NegativeLogLikelihoodLoss[reduction="none"]
// return (%8)
Node* castNode = nullptr;
if (prev->kind() == onnx::Cast) {
castNode = prev;
prev = prev->input(0)->node();
}
if (prev->kind() == onnx::LogSoftmax) {
// if the input is 2D
// graph(%input : Float(3, 5),
// %target : Long(3)):
// %4 : Float(3, 5) = onnx::LogSoftmaxaxis=1
// %8 : Float(3) = onnx::NegativeLogLikelihoodLoss[reduction="none"]
// return (%8)
origLogSoftmaxNode = prev;
} else if (
prev->kind() == onnx::Transpose &&
prev->input(0)->node()->kind() == onnx::LogSoftmax) {
// if the input is 4D
// graph(%input : Float(3, 5, 2, 7),
// %target : Long(3, 2, 7)):
// %4 : Tensor = onnx::Transpose[perm=[0, 3, 2, 1]] (%input)
// %5 : Tensor = onnx::LogSoftmax[axis=3] (%4)
// %6 : Float(3, 5, 2, 7) = onnx::Transpose[perm=[0, 3, 2, 1]] (%5)
// %10 : Float(3, 2, 7) =
// onnx::NegativeLogLikelihoodLoss[reduction="none"](%6, %target) return
// (%10)
origLogSoftmaxNode = prev->input(0)->node();
auto transpose = origLogSoftmaxNode->input(0)->node();
if (!transpose->inputs().empty()) {
origLogSoftmaxNode->replaceInput(0, transpose->inputs().at(0));
}
} else if (
prev->kind() == onnx::Reshape &&
prev->input(0)->node()->kind() == onnx::Transpose &&
prev->input(0)->node()->input(0)->node()->kind() ==
onnx::LogSoftmax) {
// if the input is 3D or > 4D
// graph(%input : Float(3, 5, 2),
// %target.1 : Long(3, 2)):
// %4 : Tensor = onnx::Transpose[perm=[0, 2, 1]] (%input)
// %5 : Tensor = onnx::LogSoftmax[axis=2] (%4)
// %6 : Float(3, 5, 2) = onnx::Transpose[perm=[0, 2, 1]] (%5)
// %8 : Tensor = onnx::Shape(%6)
// %10 : Tensor = onnx::Constantvalue={0}
// %11 : Long() = onnx::Gather[axis=0] (%8, %10)
// %13 : Tensor = onnx::Shape(%6)
// %15 Tensor = onnx::Constantvalue={1}
// %16 : Long() = onnx::Gather[axis=0] (%13, %15)
// ...
// %22 : Float(3, 5, 1, 2) = onnx::Reshape(%6, %21)
// ...
// %26 : Long(3, 1, 2) = onnx::Reshape(%target.1, %25)
// %30 : Float() = onnx::NegativeLogLikelihoodLoss[reduction="sum"](%22,
// %26) return (%30)
origLogSoftmaxNode = prev->input(0)->node()->input(0)->node();
auto transpose = origLogSoftmaxNode->input(0)->node();
TORCH_INTERNAL_ASSERT(transpose->kind() == onnx::Transpose);
origLogSoftmaxNode->replaceInput(0, transpose->inputs().at(0));
auto reshape = origNllLossNode->input(1)->node();
TORCH_INTERNAL_ASSERT(reshape->kind() == onnx::Reshape);
origNllLossNode->replaceInput(1, reshape->inputs().at(0));
if (origNllLossNode->s(attr::reduction) == "none") {
// when reduction=none a different graph is created and the graph
// doesn't end with node NegativeLogLikelihoodLoss like in all other
// cases.
// graph(%input : Float(3, 5, 2), %target.1 : Long(3, 2)):
// %4 : Tensor = onnx::Transposeperm=[0, 2, 1]
// %5 : Tensor = onnx::LogSoftmaxaxis=2
// %6 : Float(3, 5, 2) = onnx::Transposeperm=[0, 2, 1]
// ...
// %27 : Float(3, 5, 1, 2) = onnx::Reshape(%6, %26)
// %31 : Long(3, 1, 2) = onnx::Reshape(%target.1, %30)
// %35 : Float(3, 1, 2) =
// onnx::NegativeLogLikelihoodLoss[reduction="none"](%27, %31) %36 :
// int[] = prim::ListConstruct(%11, %21) %37 : Float(3, 2) =
// onnx::Reshape(%35, %36) return (%37)
auto nllloss_output = origNllLossNode->output(0)->uses()[0].user;
TORCH_INTERNAL_ASSERT(nllloss_output->kind() == onnx::Reshape);
// make output of reshape the output of nllloss
nllloss_output->replaceAllUsesWith(origNllLossNode);
origNllLossNode->output(0)->copyMetadata(nllloss_output->output(0));
}
} else {
continue;
}
// If the pattern indeed consists of a cast node before the
// NegativeLogLikelihoodLoss node, place a cast node in the beginning
// of the pattern instead
if (castNode != nullptr) {
auto onnx_type = castNode->i(attr::to);
Node* cast_node = b->owningGraph()->create(onnx::Cast, 1);
cast_node->addInput(origLogSoftmaxNode->inputs().at(0));
cast_node->i_(attr::to, onnx_type);
cast_node->insertBefore(origLogSoftmaxNode);
cast_node->copyMetadata(castNode);
origLogSoftmaxNode->replaceInputWith(
origLogSoftmaxNode->inputs().at(0), cast_node->output());
}
Node* softmaxCrossEntropyNode = b->owningGraph()->create(
onnx::SoftmaxCrossEntropyLoss, it->outputs().size());
for (size_t i = 0; i < softmaxCrossEntropyNode->outputs().size(); ++i) {
softmaxCrossEntropyNode->outputs()[i]->copyMetadata(it->outputs()[i]);
}
softmaxCrossEntropyNode->copyMetadata(origNllLossNode);
softmaxCrossEntropyNode->copyAttributes(*origNllLossNode);
softmaxCrossEntropyNode->insertBefore(origNllLossNode);
softmaxCrossEntropyNode->addInput(origLogSoftmaxNode->inputs().at(0));
softmaxCrossEntropyNode->addInput(origNllLossNode->inputs().at(1));
softmaxCrossEntropyNode->copyMetadata(origNllLossNode);
// optional weight input is provided
if (origNllLossNode->inputs().size() == 3) {
softmaxCrossEntropyNode->addInput(origNllLossNode->inputs().at(2));
}
it->replaceAllUsesWith(softmaxCrossEntropyNode);
it->removeAllInputs();
it.destroyCurrent();
}
}
}
// This optimization removes consecutive SplitToSequence and ConcatFromSequence
// operators. The optimization only happens when
// 1. Output of SplitToSequence is not used by any other nodes.
// 2. The attribute keepdims and axis of SplitToSequence match
// attribute new_axis and axis of ConcatFromSequence.
// In that case, the two ops combined are no-op, and can be safely removed.
static void removeSequenceSplitConcat(Block* b) {
for (auto it = b->nodes().begin(), end = b->nodes().end(); it != end; ++it) {
for (auto* child_block : it->blocks()) {
removeSequenceSplitConcat(child_block);
}
if (it->kind() == onnx::ConcatFromSequence &&
it->input()->node()->kind() == onnx::SplitToSequence) {
if (it->input()->uses().size() > 1) {
continue;
}
auto split_node = it->input()->node();
auto concat_node = *it;
const auto split_axis =
split_node->hasAttribute(attr::axis) ? split_node->i(attr::axis) : 0;
const auto split_keepdims = split_node->hasAttribute(attr::keepdims)
? split_node->i(attr::keepdims)
: 1;
const auto concat_axis = concat_node->i(attr::axis);
const auto concat_new_axis = concat_node->hasAttribute(attr::new_axis)
? concat_node->i(attr::new_axis)
: 0;
const bool has_input_split = split_node->inputs().size() == 2;
if (has_input_split) {
continue;
}
if (split_keepdims == concat_new_axis) {
continue;
}
if (split_axis != concat_axis) {
continue;
}