forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhelper.cpp
300 lines (275 loc) · 9.05 KB
/
helper.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/passes/onnx/helper.h>
#include <torch/csrc/onnx/back_compat.h>
#include <ATen/ScalarOps.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#else
#include <ATen/ops/unsqueeze.h>
#endif
#include <onnx/onnx_pb.h>
namespace torch {
namespace jit {
namespace onnx {
using namespace ::c10::onnx;
} // namespace onnx
ValueToParamPairMap buildValueToParamsMap(
Block* b,
const ParamMap& paramsDict) {
ValueToParamPairMap valsToParamsMap;
for (auto& input : b->inputs()) {
auto it = paramsDict.find(input->debugName());
if (it != paramsDict.end()) {
valsToParamsMap.emplace(input, *it);
}
}
return valsToParamsMap;
}
void eraseUnusedBlockInputs(Block* b) {
for (size_t i_1 = b->inputs().size(); i_1 > 0; --i_1) {
size_t i = i_1 - 1;
if (!b->inputs().at(i)->hasUses()) {
b->eraseInput(i);
}
}
}
void eraseUnusedValuesFromMap(ValueToParamPairMap& valsToParamsMap) {
auto it = valsToParamsMap.begin();
while (it != valsToParamsMap.end()) {
if (!it->first->hasUses()) {
it = valsToParamsMap.erase(it);
} else {
++it;
}
}
}
void buildParamsMapFromValueToParamsMap(
const ValueToParamPairMap& valsToParamsMap,
ParamMap& paramsDict) {
paramsDict.clear();
for (const auto& nameTensorParamPair : valsToParamsMap) {
paramsDict.insert(nameTensorParamPair.second);
}
}
std::optional<at::ScalarType> ONNXTypeToATenType(int32_t onnx_type) {
switch (onnx_type) {
case ::ONNX_NAMESPACE::TensorProto_DataType_UNDEFINED:
return at::ScalarType::Undefined;
case ::ONNX_NAMESPACE::TensorProto_DataType_FLOAT:
return at::kFloat;
case ::ONNX_NAMESPACE::TensorProto_DataType_UINT8:
return at::kByte;
case ::ONNX_NAMESPACE::TensorProto_DataType_INT8:
return at::kChar;
case ::ONNX_NAMESPACE::TensorProto_DataType_INT16:
return at::kShort;
case ::ONNX_NAMESPACE::TensorProto_DataType_INT32:
return at::kInt;
case ::ONNX_NAMESPACE::TensorProto_DataType_INT64:
return at::kLong;
case ::ONNX_NAMESPACE::TensorProto_DataType_BOOL:
return at::kBool;
case ::ONNX_NAMESPACE::TensorProto_DataType_FLOAT16:
return at::kHalf;
case ::ONNX_NAMESPACE::TensorProto_DataType_DOUBLE:
return at::kDouble;
case ::ONNX_NAMESPACE::TensorProto_DataType_COMPLEX64:
return at::kComplexFloat;
case ::ONNX_NAMESPACE::TensorProto_DataType_COMPLEX128:
return at::kComplexDouble;
case ::ONNX_NAMESPACE::TensorProto_DataType_BFLOAT16:
return at::kBFloat16;
case ::torch::onnx::TensorProto_DataType_FLOAT8E5M2:
return at::kFloat8_e5m2;
case ::torch::onnx::TensorProto_DataType_FLOAT8E5M2FNUZ:
return at::kFloat8_e5m2fnuz;
case ::torch::onnx::TensorProto_DataType_FLOAT8E4M3FN:
return at::kFloat8_e4m3fn;
case ::torch::onnx::TensorProto_DataType_FLOAT8E4M3FNUZ:
return at::kFloat8_e4m3fnuz;
default:
TORCH_CHECK(
false,
"ONNX type ",
onnx_type,
" is an unexpected tensor scalar type");
}
return std::optional<at::ScalarType>{};
}
Node* addNodeToBlock(Block* block, Symbol kind, ArrayRef<Value*> inputs) {
auto new_node = block->appendNode(block->owningGraph()->create(kind));
for (auto input : inputs) {
new_node->addInput(input);
}
return new_node;
}
Value* addInputToBlock(Block* block) {
return block->addInput();
}
namespace {
::ONNX_NAMESPACE::TensorProto_DataType ATenTypeToOnnxType_aux(
at::ScalarType at_type) {
switch (at_type) {
case at::kDouble:
return ::ONNX_NAMESPACE::TensorProto_DataType_DOUBLE;
case at::kFloat:
return ::ONNX_NAMESPACE::TensorProto_DataType_FLOAT;
case at::kHalf:
return ::ONNX_NAMESPACE::TensorProto_DataType_FLOAT16;
case at::kByte:
return ::ONNX_NAMESPACE::TensorProto_DataType_UINT8;
case at::kChar:
return ::ONNX_NAMESPACE::TensorProto_DataType_INT8;
case at::kShort:
return ::ONNX_NAMESPACE::TensorProto_DataType_INT16;
case at::kInt:
return ::ONNX_NAMESPACE::TensorProto_DataType_INT32;
case at::kLong:
return ::ONNX_NAMESPACE::TensorProto_DataType_INT64;
case at::kBool:
return ::ONNX_NAMESPACE::TensorProto_DataType_BOOL;
case at::kQInt8:
return ::ONNX_NAMESPACE::TensorProto_DataType_INT8;
case at::kQUInt8:
return ::ONNX_NAMESPACE::TensorProto_DataType_UINT8;
case at::kQInt32:
return ::ONNX_NAMESPACE::TensorProto_DataType_INT32;
default:
TORCH_CHECK(
false,
"ScalarType ",
toString(at_type),
" is an unexpected tensor scalar type");
}
}
} // namespace
int ATenTypeToOnnxType(at::ScalarType at_type) {
return static_cast<int>(ATenTypeToOnnxType_aux(at_type));
}
Node* createONNXUnsqueeze(
Graph* graph,
Node* n_to_insert_before,
Value* input,
int axis,
int opset_version) {
Node* unsqueeze_node = graph->create(onnx::Unsqueeze, 1);
unsqueeze_node->addInput(input);
unsqueeze_node->insertBefore(n_to_insert_before);
if (opset_version >= OPSET_VERSION_13) {
// ONNX spec sets `axes` as input for opset >= 13.
Node* unsqueeze_axes = graph->create(onnx::Constant, 1);
unsqueeze_axes->insertBefore(unsqueeze_node);
unsqueeze_axes->t_(
attr::value, at::unsqueeze(at::scalar_to_tensor(at::Scalar(axis)), 0));
unsqueeze_node->addInput(unsqueeze_axes->output());
} else {
// ONNX spec sets `axes` as attribute for opset < 13.
unsqueeze_node->is_(attr::axes, {0});
}
return unsqueeze_node;
}
Node* createONNXConstant(
Graph* graph,
Node* n_to_insert_before,
at::Tensor value) {
Node* constant_node = graph->create(onnx::Constant, 1);
constant_node->insertBefore(n_to_insert_before);
constant_node->t_(attr::value, std::move(value));
return constant_node;
}
bool isValidToTransformToONNXConcatNode(Node* lc_node) {
return !lc_node->inputs().empty();
}
Node* transformToONNXConcatNode(
Graph* g,
Node* lc_node,
bool need_new_input,
int opset_version) {
// ListConstruct Int[] output case, we need to transform to ONNX
// Concat to ensure the output is a single tensor(dynamic) type in
// order to be consumed as inputs
std::vector<Value*> unsqueezed;
auto new_node = need_new_input ? g->return_node() : lc_node;
for (auto* input : lc_node->inputs()) {
auto new_input =
need_new_input ? g->addInput()->copyMetadata(input) : input;
// This particular Concat operation concats along axis=0 and this requires
// inputs to the node to have the same shape along dim-0. To ensure this,
// unsqueeze nodes are added such that all shapes along dim-0 are 1.
// Certain inputs from ListConstruct Int[] could be combinations of scalars
// and 1-D tensors, For inputs that are already 1-D tensors, we skip the
// step of creating a corresponding unsqueeze node.
if (auto type = new_input->type()->cast<TensorType>()) {
if (type->dim() && type->dim() == 1U) {
unsqueezed.emplace_back(new_input);
continue;
}
}
Node* unsqueezed_node =
createONNXUnsqueeze(g, new_node, new_input, 0, opset_version);
unsqueezed_node->copyMetadata(lc_node);
unsqueezed.emplace_back(unsqueezed_node->output());
}
Node* concat_node = need_new_input
? g->insertNode(g->create(onnx::Concat, 1))
: g->create(onnx::Concat, 1)->insertBefore(lc_node);
concat_node->i_(attr::axis, 0);
for (auto v : unsqueezed) {
concat_node->addInput(v);
}
return concat_node;
}
void ONNXLintGraph(
const Block* b,
std::vector<NodeKind>& n_miss_source_range,
std::vector<NodeKind>& n_miss_scope) {
for (const auto* n : b->nodes()) {
for (const auto* sub_b : n->blocks()) {
ONNXLintGraph(sub_b, n_miss_source_range, n_miss_scope);
}
if (nullptr == n->sourceRange().source()) {
GRAPH_DEBUG("Node does not set sourceRange:", *n);
n_miss_source_range.emplace_back(n->kind());
}
if (n->scopeName().empty()) {
GRAPH_DEBUG("Node does not set scope:", *n);
n_miss_scope.emplace_back(n->kind());
}
}
}
void ONNXLintGraph(const std::shared_ptr<Graph>& graph) {
// Print nodes that do not have scope/source range covered.
std::vector<NodeKind> n_miss_source_range, n_miss_scope;
ONNXLintGraph(graph->block(), n_miss_source_range, n_miss_scope);
auto count_const = [](const std::vector<NodeKind>& vec) -> size_t {
size_t count = 0;
for (auto k : vec) {
switch (k) {
case prim::Constant:
case prim::ListConstruct:
case onnx::Constant:
count++;
break;
}
}
return count;
};
auto const_count_src = count_const(n_miss_source_range);
auto const_count_scope = count_const(n_miss_scope);
GRAPH_UPDATE(
"Missing source range.\n",
"Total ",
n_miss_source_range.size(),
" nodes. Including ",
const_count_src,
" constants.");
GRAPH_UPDATE(
"Missing scope.\n",
"Total ",
n_miss_scope.size(),
" nodes. Including ",
const_count_scope,
" constants.");
}
} // namespace jit
} // namespace torch