forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtensorpipe_utils.h
123 lines (103 loc) · 4.65 KB
/
tensorpipe_utils.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
#pragma once
#ifdef USE_TENSORPIPE
#include <torch/csrc/distributed/rpc/utils.h>
namespace tensorpipe {
class Message;
class Allocation;
class Descriptor;
} // namespace tensorpipe
namespace torch {
namespace distributed {
namespace rpc {
TORCH_API const c10::Stream& getStreamForDevice(
const std::vector<c10::Stream>& streams,
const c10::Device& device);
// Inspired by c10/core/impl/DeviceGuardImplInterface.h.
class TensorpipeDeviceTypeConverter {
public:
// Ideally we'd want this to also return a tensorpipe::Message::Tensor object
// but we cannot forward-declare that class (because it's nested), and we
// cannot include the TensorPipe headers because it's a private dependency.
// Thus we bend over backwards and entrust this method with appending that
// object to the `tensors` field of the tensorpipe::Message object we pass.
virtual std::optional<std::vector<char>> prepareTensorForSending(
const c10::Storage& storage,
const std::vector<c10::Stream>& streams,
tensorpipe::Message& message) const = 0;
// Same as above: this method cannot return a tensorpipe::Allocation::Tensor,
// thus it appends it to the `tensors` field of the tensorpipe::Allocation.
virtual at::DataPtr allocateTensorForReceiving(
c10::DeviceIndex deviceIndex,
size_t length,
const std::vector<c10::Stream>& streams,
tensorpipe::Allocation& allocation) const = 0;
virtual ~TensorpipeDeviceTypeConverter() = default;
};
extern TORCH_API std::array<
std::atomic<const TensorpipeDeviceTypeConverter*>,
static_cast<size_t>(DeviceType::COMPILE_TIME_MAX_DEVICE_TYPES)>
device_type_converter_registry;
class TORCH_API TensorpipeDeviceTypeConverterRegistrar {
public:
TensorpipeDeviceTypeConverterRegistrar(
DeviceType,
const TensorpipeDeviceTypeConverter*);
};
#define C10_REGISTER_TENSORPIPE_DEVICE_TYPE_CONVERTER( \
DevType, TensorpipeDeviceTypeConverter) \
static ::torch::distributed::rpc::TensorpipeDeviceTypeConverterRegistrar \
C10_ANONYMOUS_VARIABLE(g_##DeviceType)( \
::c10::DeviceType::DevType, new TensorpipeDeviceTypeConverter());
inline const TensorpipeDeviceTypeConverter* getDeviceTypeConverter(
DeviceType type) {
return device_type_converter_registry[static_cast<size_t>(type)].load();
}
// A struct that holds pointers that keep alive all the memory that will be
// accessed by TensorPipe during a write operation.
struct TensorpipeWriteBuffers {
// Allocate on heap so pointers stay valid as we move the holder.
std::unique_ptr<MessageType> type;
std::unique_ptr<int64_t> id;
std::vector<char> payload;
std::vector<char> pickle;
// This contains the original tensors and the clones of the sparse tensors.
std::vector<torch::Tensor> tensors;
// This contains the copies of the data of the tensors that didn't own their
// memory, e.g., the ones created from torch::from_blob() with no deleter.
std::vector<std::vector<char>> copiedTensors;
};
// A struct that holds pointers that keep alive all the memory that will be
// accessed by TensorPipe during a read operation.
struct TensorpipeReadBuffers {
// Allocate on heap so pointers stay valid as we move the holder.
std::unique_ptr<MessageType> type;
std::unique_ptr<int64_t> id;
std::vector<char> payload;
std::vector<char> pickle;
std::vector<c10::DataPtr> tensors;
};
// Convert an RPC message into a TensorPipe message, plus a holder to all the
// data that must be kept alive while the write is performed asynchronously.
TORCH_API std::tuple<tensorpipe::Message, TensorpipeWriteBuffers>
tensorpipeSerialize(
c10::intrusive_ptr<Message> rpcMessage,
std::vector<c10::Device> devices,
const std::vector<c10::Stream>& streams);
// Allocate the buffers that will hold the incoming data. They will be managed
// by the returned holder, which must be kept alive until the asynchronous read
// has finished. Pointers to these buffers will be stored in the returned
// tensorpipe::Allocation struct.
TORCH_API std::pair<tensorpipe::Allocation, TensorpipeReadBuffers>
tensorpipeAllocate(
const tensorpipe::Descriptor& tpDescriptor,
const std::vector<c10::Stream>& streams);
// Convert a TensorPipe message back into an RPC message. This requires the data
// to be available and can thus only be performed once the asynchronous read has
// completed. The holder can be destroyed once this function returns.
TORCH_API c10::intrusive_ptr<Message> tensorpipeDeserialize(
tensorpipe::Descriptor&& tpDescriptor,
TensorpipeReadBuffers&& holder);
} // namespace rpc
} // namespace distributed
} // namespace torch
#endif // USE_TENSORPIPE