forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrref_context.cpp
808 lines (752 loc) · 31.2 KB
/
rref_context.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
#include <torch/csrc/distributed/rpc/rref_context.h>
#include <torch/csrc/distributed/rpc/rref_proto.h>
#include <torch/csrc/distributed/rpc/utils.h>
#include <sstream>
namespace torch {
namespace distributed {
namespace rpc {
thread_local std::vector<std::shared_ptr<RRefContext::PendingUserState>>
RRefContext::userTable_;
thread_local bool RRefContext::recording_ = false;
namespace callback {
void confirmPendingUser(
const JitFuture& jitFuture,
const ForkId& expectedForkId) {
if (!jitFuture.hasError()) {
auto msgPtr = jitFuture.constValue().toCustomClass<Message>();
auto msgType = msgPtr->type();
auto rpc = deserializeResponse(*msgPtr, msgType);
auto& rr = dynamic_cast<RemoteRet&>(*rpc);
TORCH_INTERNAL_ASSERT(rr.forkId() == expectedForkId);
} else {
// Handle errors, such as timeouts, by invoking the error handler on the
// rref.
// Note [Best Effort Error handling for Remote calls]:
// When remote calls initiated by rpc.remote() fail, such as with a timeout
// error, we take a best-effort approach to error handling. We handle errors
// when callbacks corresponding to the remote call run, and set the error
// information on the RRef. If the RRef has not been used by the application
// before this process (such as to_here or fork call), then future uses of
// the RRef will appropriately raise errors. However, it is possible that
// the user application will use the RRef before the errors are handled. In
// this case, errors may not be raised as they have not yet been handled.
auto rref_ptr = RRefContext::getInstance().getPendingUser(expectedForkId);
auto errorType = getRPCErrorType(jitFuture);
rref_ptr->handleError(errorType, jitFuture);
}
RRefContext::getInstance().delPendingUser(expectedForkId);
}
c10::intrusive_ptr<RRef> finishCreatingOwnerRRef(
const JitFuture& jitFuture,
const RRefId& rrefId) {
if (jitFuture.hasError()) {
auto& ctx = RRefContext::getInstance();
// We expect to run this callback only after the OwnerRRef has been created,
// since this is only invoked when sending to self.
auto rref_ptr =
fromRRefInterface(ctx.getOwnerRRef(rrefId, /* foreCreated */ true)
->constValue()
.toRRef());
auto errorType = getRPCErrorType(jitFuture);
rref_ptr->handleError(errorType, jitFuture);
// OwnerRRefs do not have a forkId, so don't need to assert here.
auto deletedRRef =
ctx.delForkOfOwner(rref_ptr->rrefId(), rref_ptr->rrefId());
return deletedRRef;
} else {
auto msgPtr = jitFuture.constValue().toCustomClass<Message>();
auto msgType = msgPtr->type();
auto rpc = deserializeResponse(*msgPtr, msgType);
auto& rr = dynamic_cast<RemoteRet&>(*rpc);
TORCH_INTERNAL_ASSERT(
rr.rrefId() == rr.forkId(),
"Expecting an OwnerRRef as RemoteRet but got a fork.");
auto& ctx = RRefContext::getInstance();
auto deletedRRef = ctx.delForkOfOwner(rr.rrefId(), rr.rrefId());
return deletedRRef;
}
}
} // namespace callback
// Keys for RRef-related debug information.
const std::string kNumOwnerRRefs = "num_owner_rrefs";
const std::string kNumPendingFutures = "num_pending_futures";
const std::string kNumPendingUsers = "num_pending_users";
const std::string kNumForks = "num_forks";
RRefContext& RRefContext::getInstance() {
// Leaky singleton to avoid module destructor races.
static RRefContext* context = new RRefContext(RpcAgent::getCurrentRpcAgent());
return *context;
}
std::vector<c10::intrusive_ptr<RRef>> RRefContext::destroyInstance(
bool ignoreRRefLeak) {
auto& ctx = RRefContext::getInstance();
{
std::lock_guard<std::mutex> lock(ctx.destroyedMutex_);
ctx.destroyed_ = true;
}
ctx.checkRRefLeaks(ignoreRRefLeak);
std::vector<c10::intrusive_ptr<RRef>> deletedRRefs;
for (auto& entry : ctx.owners_) {
auto rref = entry.second;
if (rref->isPyObj()) {
deletedRRefs.emplace_back(std::move(rref));
}
}
ctx.owners_.clear();
ctx.pendingOwners_.clear();
return deletedRRefs;
}
void RRefContext::handleException(const JitFuture& jitFuture) {
if (jitFuture.hasError()) {
auto errMsg = jitFuture.tryRetrieveErrorMessage();
VLOG(1) << "Got exception: " << errMsg;
TORCH_CHECK(false, errMsg);
}
}
void RRefContext::handleExceptionSilent(const JitFuture& jitFuture) {
if (jitFuture.hasError()) {
auto errMsg = jitFuture.tryRetrieveErrorMessage();
VLOG(1) << "Got exception: " << errMsg;
TORCH_CHECK_MSG(false, errMsg);
}
}
RRefContext::RRefContext(std::shared_ptr<RpcAgent> agent)
: agent_(std::move(agent)) {}
RRefContext::~RRefContext() {
if (!owners_.empty()) {
VLOG(1) << "Destructing RRefContext with non-empty OwnerRRef set. "
<< "This would likely cause Python deref error. "
<< "Make sure destroyInstance() is invoked before destruction.";
}
}
std::unordered_map<std::string, std::string> RRefContext::getDebugInfo() {
std::unordered_map<std::string, std::string> info;
std::unique_lock<std::mutex> lock(mutex_);
auto ownerSize = owners_.size();
auto numPendingUsers = pendingUsers_.size();
int numForks = 0;
for (const auto& owner : forks_) {
numForks += owner.second.size();
}
lock.unlock();
info[kNumOwnerRRefs] = c10::to_string(ownerSize);
info[kNumPendingFutures] = c10::to_string(numPendingFutures_.load());
info[kNumPendingUsers] = c10::to_string(numPendingUsers);
info[kNumForks] = c10::to_string(numForks);
return info;
}
void RRefContext::checkRRefLeaks(bool ignoreRRefLeak) {
if (!forks_.empty()) {
std::stringstream ss;
for (auto& entry : forks_) {
const RRefId& rrefId = entry.first;
for (const auto& forkId : entry.second) {
ss << "Leaking RRef " << rrefId << " with fork Id " << forkId
<< std::endl;
}
}
LOG(WARNING)
<< "Detected RRef Leaks during shutdown. This usually "
<< "occurs when the application code still holds references to RRef "
<< "instances when calling shutdown(). If the program has "
<< "completed correctly and the process is exiting, it is OK to "
<< "ignore these leaks. However, if you program will keep running "
<< "after this, these leaks could result in memory leaks on RRef "
<< "owners. Please make sure all RRefs are out of scope and Python "
<< "GC has deleted them before calling shutdown(): \n"
<< ss.str();
if (!ignoreRRefLeak) {
TORCH_CHECK(false, ss.str());
}
}
}
c10::intrusive_ptr<UserRRef> RRefContext::createUserRRef(
worker_id_t ownerId,
const TypePtr& type) {
TORCH_CHECK(ownerId != getWorkerId(), "Cannot create UserRRef on owner.");
// Explicitly creating rrefId before forkId to make sure the order is
// deterministic, as the argument evaluation order is system and compiler
// dependent.
const auto rrefId = genGloballyUniqueId();
const auto forkId = genGloballyUniqueId();
return createUserRRef(ownerId, rrefId, forkId, type);
}
c10::intrusive_ptr<UserRRef> RRefContext::createUserRRef(
worker_id_t ownerId,
const RRefId& rrefId,
const ForkId& forkId,
const TypePtr& type) {
TORCH_CHECK(ownerId != getWorkerId(), "RRef owner cannot create user RRef.");
// RRefContext does not track user RRefs, it will be destructed when there
// is no shared_ptrs pointing to it.
//
// NB: cannot use make_shared here as the constructor of UserRRef is private.
// NB: This UserRRef has not been confirmed by the owner yet. This function's
// call site is responsible for adding this UserRRef to pendingUsers_.
// Currently, there are two call sites.
// (1) The creator user in python_functions.cpp
// (2) The callee user in RRefContext::notifyOwnerAndParentOfFork.
//
// The reason for not adding the pending user here is to put addPendingUser()
// close to where the RPC occurs, and it is more clear to pair it with
// deletePendingUser() in the response callback at the call site.
return c10::make_intrusive<UserRRef>(ownerId, rrefId, forkId, type);
}
void RRefContext::delUser(
const worker_id_t owner,
const RRefId& rrefId,
const ForkId& forkId) {
{
std::lock_guard<std::mutex> lock(destroyedMutex_);
if (!destroyed_) {
// Sending an RRefUserDelete causes the receiver to run delForkOfOwner,
// which is now idempotent. See the comment at RRefContext::delForkOfOwner
// for more details.
++numPendingFutures_;
auto jitFuture = agent_->sendWithRetries(
agent_->getWorkerInfo(owner),
RRefUserDelete(rrefId, forkId).toMessage());
jitFuture->addCallback([this](JitFuture& future) {
handleExceptionSilent(future);
--numPendingFutures_;
});
}
}
std::lock_guard<std::mutex> lock(mutex_);
confirmedUsers_.erase(forkId);
}
void RRefContext::delAllUsersAndUnforkedOwners(
std::chrono::milliseconds timeoutMillis) {
// First, wait for all pending UserRRefs to be confirmed,
// one kind is pendingUsers_, which are shared from Owner,
// the other kind pendingChildren_, which are shared from another User.
std::unordered_map<ForkId, c10::weak_intrusive_ptr<RRef>, ForkId::Hash>
tempConfirmedUsers;
{
std::unique_lock<std::mutex> lock(mutex_);
bool noPending = deleteAllUsersCV_.wait_for(lock, timeoutMillis, [this]() {
return pendingUsers_.empty() && pendingChildren_.empty();
});
if (!noPending) {
LOG(ERROR)
<< "Timed out waiting for pending UserRRefs to be confirmed by owner and parent.";
}
tempConfirmedUsers.swap(confirmedUsers_);
}
// Start sending UserRRef delete messages, after all pendings are confirmed.
// Note, there should be no new forkings in between, because it's assumed that
// this utility is called during graceful shutdown, where no new user RPCs can
// be initiaited anymore.
for (const auto& user : tempConfirmedUsers) {
c10::intrusive_ptr<RRef> rref_ptr = user.second.lock();
if (!rref_ptr) {
continue;
}
// tryDel() below will re-acquire lock, lock must be released here.
rref_ptr->tryDel();
}
// If an rref in the owners_ map has never been forked, we will never get a
// corresponding message from the forking node(s) telling us to delete the
// RRef. Hence we delete the RRef here. This can occur when a remote call is
// sent to self and times out.
{
std::unique_lock<std::mutex> lock(mutex_);
std::vector<RRefId> unforkedOwners;
for (const auto& it : owners_) {
auto rrefId = it.first;
if (forks_.find(rrefId) == forks_.end()) {
// Successful fork of owner was never processed.
unforkedOwners.push_back(rrefId);
}
}
for (auto& rrefId : unforkedOwners) {
LOG(INFO) << "Removing unforked OwnerRRef with RRefId: " << rrefId;
auto iter = owners_.find(rrefId);
TORCH_CHECK(
iter != owners_.end(),
c10::str("Did not find OwnerRRef with RRefId: ", rrefId));
owners_.erase(iter);
}
}
// Wait for this node to process all delete UserRRef messages it may get for
// the OwnerRRefs that exist on this node.
{
std::unique_lock<std::mutex> lock(mutex_);
bool noOwner = deleteAllUsersCV_.wait_for(
lock, timeoutMillis, [this]() { return owners_.empty(); });
if (!noOwner) {
LOG(ERROR) << "Timed out waiting for pending OwnerRRefs to be deleted.";
}
}
}
c10::intrusive_ptr<RRef> RRefContext::getOrCreateRRef(
const RRefForkData& rrefForkData,
const TypePtr& type) {
auto& ownerId = rrefForkData.ownerId_;
auto& rrefId = rrefForkData.rrefId_;
auto& forkId = rrefForkData.forkId_;
if (ownerId == getWorkerId()) {
return getOrCreateOwnerRRef(rrefId, type);
} else {
return createUserRRef(ownerId, rrefId, forkId, type);
}
}
c10::intrusive_ptr<OwnerRRef> RRefContext::getOrCreateOwnerRRef(
const RRefId& rrefId,
const TypePtr& type) {
std::lock_guard<std::mutex> lock(mutex_);
const auto iter = owners_.find(rrefId);
if (iter == owners_.end()) {
// Scenario (1) the first time this owner knows about this RRef
//
// NB: cannot use make_shared here as the constructor of OwnerRRef is
// private.
auto rref = c10::make_intrusive<OwnerRRef>(
getWorkerId(), rrefId, type, agent_->getDevices());
owners_[rref->rrefId()] = rref;
const auto pendingOwnerIter = pendingOwners_.find(rrefId);
if (pendingOwnerIter != pendingOwners_.end()) {
// cast to RRefInterface to hold it into IValue
auto rrefPtr = fromOwnerRRef(rref);
pendingOwnerIter->second->markCompleted(IValue(rrefPtr));
pendingOwners_.erase(pendingOwnerIter);
}
return rref;
} else {
// Scenario (2) retrieving an existing RRef
auto ownerRRef = fromRRefInterface(iter->second);
// Now double check if the two types match
//
// Why we are special casing the check for tensor type here?
// this is because tensor types might get specialized on tensors when
// we pass inputs to the function, i.e. TensorType can filled with
// specific shape info, requires_grad info, etc. so the OwerRRef we
// found might already have those infos, but the `type` we passed in
// here is a plain TensorType, they are not equal relationship:
// specialized TensorType <: plain TensorType
//
// In RPC we don't care the difference as we ser/de with just the
// plain TensorType. This is not a issue for UserRRef creation either,
// since Tensor can only get specialized with a previous run of local
// JIT function, and we shouldn't preserve the specialized SubTensorType
// information on other workers because it's only information only.
if (type->isSubtypeOf(*TensorType::get())) {
TORCH_INTERNAL_ASSERT(
ownerRRef->type()->isSubtypeOf(*TensorType::get()),
"Expect OwnerRRef to be a sub-type of TensorType, but got ",
ownerRRef->type()->repr_str());
} else {
TORCH_INTERNAL_ASSERT(
*ownerRRef->type() == *type,
"OwnerRRef type is ",
ownerRRef->type()->repr_str(),
", expected type is ",
type->repr_str());
}
return ownerRRef;
}
}
c10::intrusive_ptr<OwnerRRef> RRefContext::createOwnerRRef(
const TypePtr& type) {
// Don't add this OnwerRRef to the owners_ map yet, otherwise
// it will never be removed from there. Instead, only add it to the
// map in prepareChildFork, in case this local RRef is being passed
// to another worker.
return c10::make_intrusive<OwnerRRef>(
getWorkerId(), genGloballyUniqueId(), type, agent_->getDevices());
}
c10::intrusive_ptr<JitFuture> RRefContext::getOwnerRRef(
const RRefId& rrefId,
bool forceCreated) {
std::unique_lock<std::mutex> lock(mutex_);
const auto iter = owners_.find(rrefId);
if (iter == owners_.end()) {
if (forceCreated) {
TORCH_INTERNAL_ASSERT(
false,
c10::str("Expected OwnerRRef with id ", rrefId, " to be created."));
}
// Scenario (1) RRef is used before it is created
const auto pendingOwnerIter = pendingOwners_.find(rrefId);
if (pendingOwnerIter == pendingOwners_.end()) {
// Note: The type passed into RRefType::create() does not matter here, as
// the future is marked as completed with the RRef of the specific type
// in getOrCreateOwnerRRef().
// We need to set devices here, even if they won't be used by the value
// (an RRef object doesn't contain any tensors, it just provides means to
// retrieve them) because we need them to be propagated/ to child futures.
// This is silly and we should find a way to avoid this.
auto futureOwner = c10::make_intrusive<JitFuture>(
RRefType::create(c10::AnyType::get()), agent_->getDevices());
pendingOwners_[rrefId] = futureOwner;
return futureOwner;
} else {
return pendingOwnerIter->second;
}
} else {
// Scenario (2) retrieving an existing RRef
// Marks IValue Future as completed with the RRef IValue.
auto owner = iter->second;
auto rrefPtr = fromOwnerRRef(owner);
// We need to set devices here, even if they won't be used by the value (an
// RRef object doesn't contain any tensors, it just provides means to
// retrieve them) because we need them to be propagated/ to child futures.
// This is silly and we should find a way to avoid this.
auto futureOwner = c10::make_intrusive<JitFuture>(
RRefType::create(owner->type()), agent_->getDevices());
futureOwner->markCompleted(IValue(rrefPtr));
return futureOwner;
}
}
RRefForkData RRefContext::prepareChildFork(
const c10::intrusive_ptr<RRef>& rref) {
// If we know that rref creation on the owner has timed out, raise it to the
// user here, otherwise continue with pickling.
TORCH_CHECK(
!rref->getTimedOut(),
"RRef creation via rpc.remote() timed out, and it "
"is possible that the RRef on the owner node does not exist.");
auto rrefForkData = rref->fork();
if (rref->isOwner()) {
// Note [Early Fork Registration]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// If the parent (caller) is the owner, directly register the fork, instead
// of waiting for another RREF_FORK_REQUEST or RREF_CHILD_ACCEPT message. An
// Alternative is adding the fork when the callee user ACKs. However, before
// that, the owner still have to adds the OwnerRRef into some map to keep it
// alive (e.g., in pendingChildren_). Hence, adding the fork here or in the
// ACK does not making any difference but only add complexity.
// TODO: When adding failure retries and timeout, this fork needs to be
// deleted if the owner does not receive the ACK within the timeout.
addForkOfOwner(rrefForkData.rrefId_, rrefForkData.forkId_);
// ensure that this RRef is in the owners_ list to keep it alive.
// this is needed for OwnerRRefs that were created locally.
{
std::lock_guard<std::mutex> lock(mutex_);
owners_[rref->rrefId()] = rref;
}
} else {
// Note [Useful Phantom Fork ID for User to Owner Call]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// If the callee of dist.remote or dist.rpc is the owner of this RRef, the
// callee will not create a fork using this rrefForkData.forkId_, because
// the owner will only keep one `OwnerRRef` instance and will not create any
// `UserRRef` instances. However, this rrefForkData.forkId_ is still
// necessary, as the caller user needs to keep this `UserRRef` alive until
// it gets the ACK from the callee owner. Otherwise, the delete message
// could arrive at the owner before this dist.rpc or dist.remote call, which
// could potentially trigger the `OwnerRRef` to be deleted before running
// the user code.
addPendingChild(rrefForkData.forkId_, rref);
}
return rrefForkData;
}
void RRefContext::notifyOwnerAndParentOfFork(
const ForkId& forkId,
worker_id_t parent,
const c10::intrusive_ptr<RRef>& rref) {
// Fork is shared from owner.
if (parent == rref->owner()) {
if (parent == agent_->getWorkerInfo().id_) {
// Owner sending RRef to self, remove the forkId as it was added during
// pickling
auto deletedRRef = delForkOfOwner(rref->rrefId(), forkId);
if (deletedRRef) {
TORCH_INTERNAL_ASSERT(
deletedRRef->rrefId() == rref->rrefId(),
"Deleting a fork of ",
rref->rrefId(),
" triggered deleting the OwnerRRef of ",
deletedRRef->rrefId());
// NB: not necessary to reset deletedRRef as rref is another shared_ptr
// instance pointing to the same OwnerRRef.
}
} else {
// If the parent is the owner, this fork has already been added into the
// forks_ map when the owner sends the message to the callee user.
// Hence, it is not necessary to send another RREF_CHILD_ACCEPT or
// RREF_FORK_REQUEST back to the owner. See Note [Early Fork
// Registration].
std::lock_guard<std::mutex> lock(mutex_);
addConfirmedUser(forkId, rref);
}
return;
}
// Fork is shared from user.
if (rref->isOwner()) {
// See Note [Useful Phantom Fork ID for User to Owner Call]
// In this case, the owner is the caller, and it does not add the fork id
// into forks_. Because, there will be no real `UserRRef` associated
// with this fork ID.
++numPendingFutures_;
auto jitFuture = agent_->sendWithRetries(
agent_->getWorkerInfo(parent), RRefChildAccept(forkId).toMessage());
jitFuture->addCallback([this](JitFuture& future) {
handleExceptionSilent(future);
--numPendingFutures_;
});
} else {
++numPendingFutures_;
auto jitFuture = agent_->sendWithRetries(
agent_->getWorkerInfo(rref->owner()),
RRefForkRequest(rref->rrefId(), forkId).toMessage());
addPendingUser(forkId, rref);
jitFuture->addCallback([this, forkId, parent](JitFuture& future) {
handleException(future);
this->finishForkRequest(forkId, parent);
// Decrease after calling finishForkRequest because, as that creates a new
// future, it might otherwise cause the count to briefly go to zero.
--numPendingFutures_;
});
}
}
void RRefContext::addPendingChild(
const ForkId& forkId,
const c10::intrusive_ptr<RRef>& rref) {
// see Note [Early Fork Registration]
// If the parent is the owner, it should directly add the child UserRRef as a
// fork.
TORCH_INTERNAL_ASSERT(
!rref->isOwner(), "OwnerRRef should not have a pending child.");
std::lock_guard<std::mutex> lock(mutex_);
TORCH_INTERNAL_ASSERT(
pendingChildren_.find(forkId) == pendingChildren_.end(),
"Inconsistent states: attempt to add the same child fork twice.");
pendingChildren_[forkId] = rref;
}
void RRefContext::delPendingChild(const ForkId& forkId) {
c10::intrusive_ptr<RRef> deletedUser;
{
std::lock_guard<std::mutex> lock(mutex_);
auto iter = pendingChildren_.find(forkId);
// We first check whether the child exists in pendingChildren_. It's
// possible the child may have been removed by a previous send attempt, and
// this check (as opposed to an assertion here) ensures that messages that
// trigger this function are idempotent.
if (iter != pendingChildren_.end()) {
// Since this UserRRef is removed from the map,
// the refcount of this UserRRef could reach to 0,
// so the "destructor", `release_resources()`, might be called,
// in which the lock is acquired again.
// So it must be destructed with the lock released.
// Meet this constraint by creating a temporary pointer to increase the
// refcount, extending its lifetime until lock released.
deletedUser = iter->second; // Increase refcount.
pendingChildren_.erase(iter); // Decrease refcount.
} else {
LOG(INFO) << "Ignoring duplicate request to delete child UserRRef with "
<< "ForkId = " << forkId;
}
}
deleteAllUsersCV_.notify_all();
// The refcount of this UserRRef could reach to 0,
// so the "destructor", release_resources(), might be called,
// in which the lock is acquired again,
// so must destruct it with the lock released.
deletedUser.reset(); // Decrease refcount.
}
void RRefContext::addPendingUser(
const ForkId& forkId,
const c10::intrusive_ptr<RRef>& rref) {
TORCH_INTERNAL_ASSERT(
!rref->isOwner(), "Attempt to add an OwnerRRef as a pending User.");
auto state = std::make_shared<PendingUserState>(rref);
if (recording_) {
// adding and waiting for pending users are guaranteed to be called from the
// same thread, but deleting pending users will be called from another
// thread. As the delPendingUser will not be able to access the same
// thread_local variable, we cannot address this problem by making
// pendingUsers_ thread_local. Instead, pendingUsers_ and userTable_ share
// the same PendingUserState shared_ptr.
userTable_.push_back(state);
}
std::lock_guard<std::mutex> lock(mutex_);
TORCH_INTERNAL_ASSERT(
pendingUsers_.find(forkId) == pendingUsers_.end(),
"Inconsistent states: attempt to add the same UserRRef twice.");
pendingUsers_.emplace(
std::piecewise_construct,
std::forward_as_tuple(forkId),
std::forward_as_tuple(state));
}
void RRefContext::delPendingUser(const ForkId& forkId) {
std::shared_ptr<PendingUserState> deletedState = nullptr;
{
std::lock_guard<std::mutex> lock(mutex_);
auto iter = pendingUsers_.find(forkId);
TORCH_INTERNAL_ASSERT(
iter != pendingUsers_.end(),
"Inconsistent states: attempt to delete a non-exist UserRRef.");
// There are two reasons for keeping the deleted PendingUserState alive
// until exiting the critical section.
// (1) Since this UserRRef is removed from the map, the refcount of this
// UserRRef could reach to 0. So the resource destructor
// (`release_resources()`) might be called, in which the lock is
// acquired again. Hence, it must be destructed with the lock released.
// To meet this constraint, we intentionally create a temporary pointer
// to increase the refcount of the deleted PendingUserState, extending
// its lifetime until lock released.
// (2) Since #34497, a user function only runs after all RRefs in the
// arguments are confirmed by their owners, which is done by adding the
// RPC processing logic as a callback to the UserRRef ready future. So,
// calling `confirm` on the PendingUserState could trigger pending user
// functions, which might in turn acquire the lock in RRefContext.
// Hence, we must release the lock to prevent deadlock.
// NB: Another option is to use reentrant lock. However, it is better for
// the developers to fully understand the locking behavior instead of
// hiding the subtle logic using a reentrant lock.
deletedState = iter->second; // Increase refcount
addConfirmedUser(forkId, iter->second->rref_);
pendingUsers_.erase(iter); // Decrease refcount.
}
deletedState->confirm();
deleteAllUsersCV_.notify_all();
deletedState.reset(); // Decrease refcount.
}
void RRefContext::addConfirmedUser(
const ForkId& forkId,
const c10::intrusive_ptr<RRef>& rref) {
// Notice, caller need to hold the mutex for confirmedUsers_.
// std::lock_guard<std::mutex> lock(mutex_);
confirmedUsers_.emplace(
std::piecewise_construct,
std::forward_as_tuple(forkId),
std::forward_as_tuple(rref));
}
c10::intrusive_ptr<RRef> RRefContext::getPendingUser(const ForkId& forkId) {
std::lock_guard<std::mutex> lock(mutex_);
auto it = pendingUsers_.find(forkId);
if (it == pendingUsers_.end()) {
TORCH_INTERNAL_ASSERT(
false, "Pending user with forkId ", forkId, " not found");
}
return it->second->rref_;
}
void RRefContext::recordThreadLocalPendingRRefs() {
TORCH_INTERNAL_ASSERT(
userTable_.empty(),
"User RRef Table should be empty when start recording");
recording_ = true;
}
c10::intrusive_ptr<JitFuture> RRefContext::waitForThreadLocalPendingRRefs() {
// We need to set devices here, even if they won't be used by the value (it's
// a bool, it doesn't contain tensors!) because we need them to be propagated
// to child futures. This is silly and we should find a way to avoid this.
auto jitFuturePtr =
c10::make_intrusive<JitFuture>(BoolType::get(), agent_->getDevices());
if (userTable_.empty()) {
jitFuturePtr->markCompleted(true);
} else {
auto remainingRRefs =
std::make_shared<std::atomic<uint64_t>>(userTable_.size());
for (auto& state : userTable_) {
state->confirmationFuture_->addCallback(
[jitFuturePtr, remainingRRefs](JitFuture& /* unused */) {
auto localCount = remainingRRefs->fetch_sub(1);
if (localCount == 1) {
jitFuturePtr->markCompleted(true);
}
});
}
userTable_.clear();
}
recording_ = false;
return jitFuturePtr;
}
void RRefContext::clearRecordedPendingRRefsOnError() {
userTable_.clear();
recording_ = false;
}
void RRefContext::finishForkRequest(const ForkId& forkId, worker_id_t parent) {
delPendingUser(forkId);
++numPendingFutures_;
auto jitFuture = agent_->sendWithRetries(
agent_->getWorkerInfo(parent), RRefChildAccept(forkId).toMessage());
jitFuture->addCallback([this](JitFuture& future) {
handleExceptionSilent(future);
--numPendingFutures_;
});
}
void RRefContext::addSelfAsFork(c10::intrusive_ptr<OwnerRRef>& rref) {
std::lock_guard<std::mutex> lock(mutex_);
const auto& rrefId = rref->rrefId();
owners_[rrefId] = rref;
auto& rrefForks = forks_[rrefId];
TORCH_INTERNAL_ASSERT(
rrefForks.find(rrefId) == rrefForks.end(),
"Attempt to add self as fork twice ",
rrefId);
rrefForks.insert(rrefId);
}
void RRefContext::addForkOfOwner(const RRefId& rrefId, const ForkId& forkId) {
std::lock_guard<std::mutex> lock(mutex_);
auto& rrefForks = forks_[rrefId];
TORCH_INTERNAL_ASSERT(
rrefForks.find(forkId) == rrefForks.end(),
"Got fork notification twice on the same RRef ",
forkId);
rrefForks.insert(forkId);
}
void RRefContext::addForkOfOwnerIfNotPresent(
const RRefId& rrefId,
const ForkId& forkId) {
std::lock_guard<std::mutex> lock(mutex_);
auto& rrefForks = forks_[rrefId];
// We first check whether the child exists in rrefForks. It's possible
// the child may have been added by a previous send attempt, and this check
// (as opposed to an assertion here) ensures that messages that trigger this
// function are idempotent.
if (rrefForks.find(forkId) == rrefForks.end()) {
rrefForks.insert(forkId);
} else {
LOG(INFO) << "Ignoring duplicate request to add Fork of OwnerRRef with "
<< "RRefId = " << rrefId << ", ForkId = " << forkId;
}
}
c10::intrusive_ptr<RRef> RRefContext::delForkOfOwner(
const RRefId& rrefId,
const ForkId& forkId) {
c10::intrusive_ptr<RRef> deletedRRef;
bool ownerReduced = false;
// There were previously multiple TORCH_CHECKs in this function that checked
// whether the passed in fork was known by the user and whether the fork had
// already been deleted. These assertions are now replaced with nested if
// statements to ensure this function is idempotent. This makes it safe to
// retry RRefUserDelete messages.
{
std::lock_guard<std::mutex> lock(mutex_);
auto rrefIter = forks_.find(rrefId);
if (rrefIter != forks_.end()) {
auto& rrefForks = rrefIter->second;
auto forkIter = rrefForks.find(forkId);
if (forkIter != rrefForks.end()) {
rrefForks.erase(forkId);
} else {
LOG(INFO)
<< "Could not find UserRRef instance, "
<< "RRefId = " << rrefId << ", ForkId = " << forkId
<< ", likely because it was deleted by a previously retried message";
}
if (rrefForks.empty()) {
auto ownerIter = owners_.find(rrefId);
if (ownerIter != owners_.end()) {
deletedRRef = ownerIter->second;
owners_.erase(ownerIter);
ownerReduced = true;
}
forks_.erase(rrefIter);
}
} else {
LOG(INFO)
<< "Could not find OwnerRRef with RRefId = " << rrefId
<< ", likely because it was deleted by a previously retried message";
}
}
if (ownerReduced) {
deleteAllUsersCV_.notify_all();
}
return deletedRRef;
}
} // namespace rpc
} // namespace distributed
} // namespace torch