forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlogger.cpp
442 lines (401 loc) · 16.7 KB
/
logger.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
#include <c10/util/StringUtil.h>
#include <fmt/format.h>
#include <torch/csrc/distributed/c10d/Utils.hpp>
#include <torch/csrc/distributed/c10d/debug.h>
#include <torch/csrc/distributed/c10d/logger.hpp>
#include <string>
#include <c10/util/CallOnce.h>
#ifdef USE_C10D_GLOO
#include <torch/csrc/distributed/c10d/ProcessGroupGloo.hpp>
#endif
namespace c10d {
static std::vector<std::string> TORCH_NCCL_BLOCKING_WAIT = {
"TORCH_NCCL_BLOCKING_WAIT",
"NCCL_BLOCKING_WAIT"};
static std::vector<std::string> TORCH_NCCL_ASYNC_ERROR_HANDLING = {
"TORCH_NCCL_ASYNC_ERROR_HANDLING",
"NCCL_ASYNC_ERROR_HANDLING"};
// Logs runtime stats to configured destination. Note that since data collection
// only runs every ddp_runtime_logging_sample_rate iterations, the actual
// training iterations recorded will be like 10,
// (20-10) * ddp_runtime_logging_sample_rate,
// (50-10) * ddp_runtime_logging_sample_rate and so on.
const int LoggingIterations[] = {10, 20, 50, 100, 500, 800, 1000}; // NOLINT
std::ostream& operator<<(std::ostream& output, const Logger& logger) {
auto& ddp_logging_data = (*logger.ddp_logging_data_);
std::string loggerInfo = fmt::format(
"[Rank {} / {}] [before iteration {}] Training {} unused_parameter_size={} \n "
"Avg forward compute time: {} \n Avg backward compute time: {} \n"
"Avg backward comm. time: {} \n Avg backward comm/comp overlap time: {}",
ddp_logging_data.ints_map["rank"],
ddp_logging_data.ints_map["world_size"],
ddp_logging_data.ints_map["iteration"],
ddp_logging_data.strs_map["module_name"],
ddp_logging_data.ints_map["unused_parameter_size"],
ddp_logging_data.ints_map["avg_forward_compute_time"],
ddp_logging_data.ints_map["avg_backward_compute_time"],
ddp_logging_data.ints_map["avg_backward_comm_time"],
ddp_logging_data.ints_map["avg_backward_compute_comm_overlap_time"]);
if (!ddp_logging_data.strs_map["comm_hook"].empty()) {
loggerInfo += fmt::format(
"\n Gradient comm. hook: {}", ddp_logging_data.strs_map["comm_hook"]);
}
if (ddp_logging_data.ints_map["join_uneven_inputs"]) {
loggerInfo += "\n Uneven input detection with join() enabled.";
}
return output << loggerInfo;
}
Logger::Logger(std::shared_ptr<c10d::Reducer> reducer)
: reducer_(std::move(reducer)) {
ddp_logging_data_ = std::make_unique<at::DDPLoggingData>();
}
c10::once_flag log_graph_static_flag;
void Logger::log_if_graph_static(bool is_static) {
c10::call_once(log_graph_static_flag, [this, is_static]() {
ddp_logging_data_->ints_map["can_set_static_graph"] = is_static;
// It is useful to report the iteration that training finished at.
ddp_logging_data_->ints_map["iteration"] = reducer_->num_iterations_;
at::LogPyTorchDDPUsage(*ddp_logging_data_);
});
}
// Environment variables
void Logger::set_env_variables() {
ddp_logging_data_->strs_map["master_port"] =
getCvarString({"MASTER_PORT"}, "N/A");
ddp_logging_data_->strs_map["master_addr"] =
getCvarString({"MASTER_ADDR"}, "N/A");
ddp_logging_data_->strs_map["torch_distributed_debug"] =
getCvarString({"TORCH_DISTRIBUTED_DEBUG"}, "N/A");
ddp_logging_data_->strs_map["cuda_visible_devices"] =
getCvarString({"CUDA_VISIBLE_DEVICES"}, "N/A");
if (reducer_->process_group_->getBackendName() == "nccl") {
ddp_logging_data_->strs_map["nccl_socket_ifname"] =
getCvarString({"NCCL_SOCKET_IFNAME"}, "N/A");
ddp_logging_data_->strs_map["nccl_blocking_wait"] =
getCvarString(TORCH_NCCL_BLOCKING_WAIT, "N/A");
ddp_logging_data_->strs_map["nccl_async_error_handling"] =
getCvarString(TORCH_NCCL_ASYNC_ERROR_HANDLING, "N/A");
ddp_logging_data_->strs_map["nccl_debug"] =
getCvarString({"NCCL_DEBUG"}, "N/A");
ddp_logging_data_->strs_map["nccl_nthreads"] =
getCvarString({"NCCL_NTHREADS"}, "N/A");
ddp_logging_data_->strs_map["nccl_ib_timeout"] =
getCvarString({"NCCL_IB_TIMEOUT"}, "N/A");
}
if (reducer_->process_group_->getBackendName() == "gloo") {
ddp_logging_data_->strs_map["gloo_socket_ifname"] =
getCvarString({"GLOO_SOCKET_IFNAME"}, "N/A");
ddp_logging_data_->strs_map["gloo_device_transport"] =
getCvarString({"GLOO_DEVICE_TRANSPORT"}, "N/A");
#ifdef USE_C10D_GLOO
auto gloo_pg = static_cast<c10d::ProcessGroupGloo*>(
reducer_->process_group_
->getBackend(c10d::ProcessGroup::BackendType::GLOO)
.get());
auto n_threads = gloo_pg->getNumThreads();
ddp_logging_data_->ints_map["gloo_num_threads"] = n_threads;
#endif
}
}
void Logger::set_parameter_stats() {
// The number of parameter tensors
ddp_logging_data_->ints_map["num_parameter_tensors"] =
reducer_->params_.size();
// Total parameters size (Bytes)
ddp_logging_data_->ints_map["total_parameter_size_bytes"] = 0;
// Parameters' data types, there may be multiple data
// types for mixed precision training.
std::set<std::string> unique_dtypes;
for (const auto& t : reducer_->params_) {
ddp_logging_data_->ints_map["total_parameter_size_bytes"] +=
t.numel() * t.element_size();
unique_dtypes.insert(std::string(t.dtype().name()));
}
ddp_logging_data_->strs_map["dtypes"] = c10::Join(", ", unique_dtypes);
}
std::vector<std::vector<size_t>> Logger::get_per_bucket_variable_indices() {
std::vector<std::vector<size_t>> per_bucket_variable_indices;
per_bucket_variable_indices.reserve(reducer_->buckets_.size());
for (const auto& bucket : reducer_->buckets_) {
const auto& indices = bucket.variable_indices;
per_bucket_variable_indices.push_back(indices);
}
return per_bucket_variable_indices;
}
std::vector<int64_t> Logger::get_bucket_sizes() {
std::vector<int64_t> bucket_sizes;
for (const auto& bucket : reducer_->buckets_) {
const auto& variables = bucket.variables;
int64_t bucket_size = 0;
for (const auto& v : variables) {
bucket_size += v.numel() * v.element_size();
}
bucket_sizes.push_back(bucket_size);
}
return bucket_sizes;
}
// Communication hook. Empty string if not set, in which case it will not be
// logged.
void Logger::set_comm_hook(const std::string& hook) {
ddp_logging_data_->strs_map["comm_hook"] = hook;
}
// Whether we are running under model.join() context manager for DDP uneven
// inputs.
void Logger::set_uneven_input_join() {
ddp_logging_data_->ints_map["join_uneven_inputs"] = true;
}
void Logger::set_static_graph() {
ddp_logging_data_->ints_map["static_graph"] = reducer_->static_graph_;
}
// Data that can be got during DistributedDataParallel construction time
void Logger::set_construction_data_and_log(
const std::string& module_name,
const std::vector<int>& device_ids,
int output_device,
bool broadcast_buffers,
bool has_sync_bn,
bool static_graph) {
// No lock is needed, as it will be called in DistributedDataParallel
// constructor.
if (static_graph) {
set_static_graph();
}
ddp_logging_data_->strs_map["module_name"] = module_name;
ddp_logging_data_->ints_map["world_size"] =
reducer_->process_group_->getSize();
ddp_logging_data_->ints_map["rank"] = reducer_->process_group_->getRank();
// In which iteration of the training loop the get_ddp_logging_data()
// is called to fetch the DDPLoggingData, 0 if the data is fetched
// before training loop.
ddp_logging_data_->ints_map["iteration"] = 0;
ddp_logging_data_->ints_map["is_multi_device_module"] =
reducer_->is_multi_device_module_;
set_parameter_stats();
// A list of bucket sizes (Bytes) calculated during construction time
ddp_logging_data_->strs_map["bucket_sizes"] =
c10::Join(", ", get_bucket_sizes());
set_env_variables();
// DistributedDataParallel constructor input parameters
ddp_logging_data_->strs_map["device_ids"] = c10::Join(", ", device_ids);
ddp_logging_data_->ints_map["output_device"] = output_device;
ddp_logging_data_->ints_map["broadcast_buffers"] = broadcast_buffers;
ddp_logging_data_->ints_map["has_sync_bn"] = has_sync_bn;
ddp_logging_data_->ints_map["bucket_cap_bytes"] = reducer_->bucket_bytes_cap_;
ddp_logging_data_->ints_map["find_unused_parameters"] =
reducer_->find_unused_parameters_;
ddp_logging_data_->ints_map["gradient_as_bucket_view"] =
reducer_->gradient_as_bucket_view_;
ddp_logging_data_->strs_map["backend_name"] =
reducer_->process_group_->getBackendName();
if (debug_level() != DebugLevel::Off) {
std::string initInfo = fmt::format(
"[Rank {}]: DDP Initialized with: \n",
ddp_logging_data_->ints_map["rank"]);
std::stringstream ddpLoggingDataInfo;
for (const auto& intItem : ddp_logging_data_->ints_map) {
ddpLoggingDataInfo << intItem.first << ": " << intItem.second << "\n";
}
for (const auto& strItem : ddp_logging_data_->strs_map) {
ddpLoggingDataInfo << strItem.first << ": " << strItem.second << "\n";
}
LOG(INFO) << initInfo << ddpLoggingDataInfo.str();
}
at::LogPyTorchDDPUsage(*ddp_logging_data_);
}
void Logger::set_event_time(
int64_t& event_time,
Timer& timer,
Timer::Event event) {
auto timestamp = timer.getTimestamp(event);
if (timestamp != c10::nullopt) {
// TODO: should we set this as human-readable time instead of unixtime?
event_time = *timestamp;
}
}
void Logger::calculate_avg_time(
int64_t& avg_time,
int64_t& time_duration,
Timer& timer,
Timer::Event start_event,
Timer::Event end_event) {
TORCH_CHECK(num_iterations_stats_recorded_ > 0);
std::optional<int64_t> maybe_time_duration =
timer.measureDifference(start_event, end_event);
if (!maybe_time_duration.has_value()) {
return;
}
time_duration = maybe_time_duration.value();
avg_time = (time_duration + avg_time * (num_iterations_stats_recorded_ - 1)) /
num_iterations_stats_recorded_;
}
void Logger::reset_performance_stats() {
ddp_logging_data_->ints_map["forward_compute_time"] = 0;
ddp_logging_data_->ints_map["backward_comm_time"] = 0;
ddp_logging_data_->ints_map["backward_compute_time"] = 0;
ddp_logging_data_->ints_map["backward_compute_comm_overlap_time"] = 0;
ddp_logging_data_->ints_map["forward_compute_time_start"] = 0;
ddp_logging_data_->ints_map["backward_compute_time_start"] = 0;
ddp_logging_data_->ints_map["backward_comm_time_start"] = 0;
ddp_logging_data_->ints_map["backward_compute_time_end"] = 0;
ddp_logging_data_->ints_map["backward_comm_time_end"] = 0;
}
void Logger::set_runtime_stats_and_log() {
// Sync with reducer's data
std::lock_guard<std::mutex> lock(reducer_->mutex_);
// Set runtime stats at the sampling iterations.
if (!reducer_->should_collect_runtime_stats()) {
return;
}
num_iterations_stats_recorded_++;
// Set ith iteration when the runtime stats are set.
ddp_logging_data_->ints_map["iteration"] = reducer_->num_iterations_;
// When get_ddp_logging_data() is called, "unused_parameter_size",
// "has_rebuilt_buckets" and "rebuilt_bucket_sizes" are updated in the latest
// sampling iteration.
// If unused_parameters_ is not empty, calculate its sizes.
// unused_parameters_ is calculated in forward call of
// each iteration.
if (reducer_->unused_parameters_.empty() &&
reducer_->find_unused_parameters_) {
// No unused params in this iteration
ddp_logging_data_->ints_map["unused_parameter_size"] = 0;
}
for (const auto& unused_index : reducer_->unused_parameters_) {
const auto& v = reducer_->params_[unused_index];
ddp_logging_data_->ints_map["unused_parameter_size"] +=
v.numel() * v.element_size();
}
// rebuilt_bucket_sizes will not change once buckets are rebuilt,
// so it only needs to set once during whole training loop.
// Rebuild buckets stats after 1st iteration
if (ddp_logging_data_->ints_map["has_rebuilt_buckets"] !=
reducer_->has_rebuilt_bucket_) {
ddp_logging_data_->ints_map["has_rebuilt_buckets"] =
reducer_->has_rebuilt_bucket_;
ddp_logging_data_->strs_map["rebuilt_bucket_sizes"] =
c10::Join(", ", get_bucket_sizes());
// Log per-bucket variable indices
std::vector<std::string> per_bucket_variable_indices;
auto indices = get_per_bucket_variable_indices();
per_bucket_variable_indices.reserve(indices.size());
for (const auto& bucket_indices : indices) {
per_bucket_variable_indices.push_back(c10::Join(" ", bucket_indices));
}
ddp_logging_data_->strs_map["rebuilt_per_bucket_param_indices"] =
c10::Join(", ", per_bucket_variable_indices);
}
// Log gradient ready order
if (!reducer_->grad_ready_order_indices_.empty()) {
// Note that the indices are for the previous iteration as
// this function is called in forward pass, and we last computed gradient
// ready order in the last backward pass.
ddp_logging_data_->strs_map["prev_iteration_grad_ready_order_indices"] =
c10::Join(", ", reducer_->grad_ready_order_indices_);
}
reset_performance_stats();
// Cuda time stats are only collected for single device modules.
if (reducer_->params_[0].is_cuda() && reducer_->is_multi_device_module_) {
TORCH_WARN_ONCE(
"Cuda time stats are not collected for multi-device modules.");
return;
}
if (!reducer_->timer_ &&
(!reducer_->params_[0].is_cuda() && !reducer_->params_[0].is_cpu())) {
TORCH_WARN_ONCE(
"Time stats are currently only collected for CPU and CUDA devices. "
"Please refer to CpuTimer or CudaTimer for how to register timer "
"for other device type.");
return;
}
TORCH_INTERNAL_ASSERT(reducer_->timer_);
calculate_avg_time(
ddp_logging_data_->ints_map["avg_forward_compute_time"],
ddp_logging_data_->ints_map["forward_compute_time"],
*reducer_->timer_,
Timer::Event::kForwardStart,
Timer::Event::kBackwardComputeStart);
calculate_avg_time(
ddp_logging_data_->ints_map["avg_backward_compute_time"],
ddp_logging_data_->ints_map["backward_compute_time"],
*reducer_->timer_,
Timer::Event::kBackwardComputeStart,
Timer::Event::kBackwardComputeEnd);
calculate_avg_time(
ddp_logging_data_->ints_map["avg_backward_comm_time"],
ddp_logging_data_->ints_map["backward_comm_time"],
*reducer_->timer_,
Timer::Event::kBackwardCommStart,
Timer::Event::kBackwardCommEnd);
calculate_avg_time(
ddp_logging_data_->ints_map["avg_backward_compute_comm_overlap_time"],
ddp_logging_data_->ints_map["backward_compute_comm_overlap_time"],
*reducer_->timer_,
Timer::Event::kBackwardCommStart,
Timer::Event::kBackwardComputeEnd);
set_event_time(
ddp_logging_data_->ints_map["forward_compute_time_start"],
*reducer_->timer_,
Timer::Event::kForwardStart);
set_event_time(
ddp_logging_data_->ints_map["backward_compute_time_start"],
*reducer_->timer_,
Timer::Event::kBackwardComputeStart);
set_event_time(
ddp_logging_data_->ints_map["backward_comm_time_start"],
*reducer_->timer_,
Timer::Event::kBackwardCommStart);
set_event_time(
ddp_logging_data_->ints_map["backward_compute_time_end"],
*reducer_->timer_,
Timer::Event::kBackwardComputeEnd);
set_event_time(
ddp_logging_data_->ints_map["backward_comm_time_end"],
*reducer_->timer_,
Timer::Event::kBackwardCommEnd);
// Log runtime stats to stderr if TORCH_DISTRIBUTED_DEBUG=DETAIL is enabled.
if (debug_level() == DebugLevel::Detail) {
LOG(INFO) << *this;
}
// Log runtime (e.g. avg performance) stats at the beginning and also
// after a larger number of iterations. Choosing 10/1000/10000 is
// not scientific here, it assumes most of applications will run
// at least 10 iterations. stats could have smaller variance if
// selected num_iterations_ is larger.
if (std::find(
std::begin(LoggingIterations),
std::end(LoggingIterations),
num_iterations_stats_recorded_) != std::end(LoggingIterations)) {
at::LogPyTorchDDPUsage(*ddp_logging_data_);
}
}
at::DDPLoggingData Logger::get_ddp_logging_data() {
std::lock_guard<std::mutex> lock(reducer_->mutex_);
return *ddp_logging_data_;
}
// initialization of static variables in C10dLogger
std::unique_ptr<C10dLogger> C10dLogger::logger_ = nullptr;
std::atomic<bool> C10dLogger::registered_(false);
C10dLogger* C10dLogger::getLogger() {
if (!registered_.load()) {
return nullptr;
}
return logger_.get();
}
void C10dLogger::registerLogger(std::unique_ptr<C10dLogger> logger) {
if (registered_.load()) {
LOG(WARNING) << "C10dLogger has already been registered.";
return;
}
registered_.store(true);
logger_ = std::move(logger);
}
void C10dLogger::log(const C10dLoggingData& data) {
for (const auto& [key, value] : data.integers) {
LOG(INFO) << key << ": " << value;
}
for (const auto& [key, value] : data.strings) {
LOG(INFO) << key << ": " << value;
}
return;
}
} // namespace c10d