forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtensor.cpp
217 lines (194 loc) · 7.21 KB
/
tensor.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
#include <torch/csrc/autograd/functions/tensor.h>
#include <torch/csrc/autograd/function.h>
#include <torch/csrc/autograd/functions/basic_ops.h>
#include <torch/csrc/autograd/functions/utils.h>
#include <torch/csrc/autograd/graph_task.h>
#include <torch/csrc/autograd/variable.h>
#include <torch/csrc/dynamo/compiled_autograd.h>
#include <ATen/ATen.h>
#include <c10/util/irange.h>
#include <cstddef>
#include <memory>
#include <stdexcept>
#include <utility>
namespace torch {
namespace autograd {
auto CopyBackwards::apply(variable_list&& grads) -> variable_list {
check_input_variables("CopyBackwards", grads, 1, -1, true);
auto grad = c10::MaybeOwned<at::Tensor>::borrowed(grads[0]);
variable_list grad_inputs(2);
if (grad->defined()) {
if (task_should_compute_output(0)) {
grad_inputs[0] = at::zeros_like(*grad, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
}
if (task_should_compute_output(1)) {
// Handle R->C copies without raising a warning
const auto src_type = src_options.dtype().toScalarType();
if (!c10::isComplexType(src_type) && grad->is_complex()) {
grad = c10::MaybeOwned<at::Tensor>::owned(at::real(grads[0]));
}
at::DeviceGuard device_guard(src_options.device());
grad_inputs[1] = grad->to(src_options);
}
}
return grad_inputs;
}
void CopyBackwards::compiled_args(CompiledNodeArgs& args) {
args.collect(src_options);
}
variable_list CopyBackwards::apply_with_saved(
const variable_list& inputs,
SwapSavedVariables& saved) {
saved.before(src_options);
auto result = apply(variable_list(inputs));
saved.after(src_options);
return result;
}
CopySlices::CopySlices(
const Variable& base_var,
at::TensorGeometry view_,
std::unique_ptr<ViewFunc> view_fn_,
std::shared_ptr<Node> fn_)
: Node(),
base(base_var),
view(std::move(view_)),
view_fn(std::move(view_fn_)),
fn(std::move(fn_)) {
// Take the next_edges of fn as our own, except for index 0 which goes
// to base instead of the view.
add_input_metadata(base_var);
const auto num_outputs = fn->num_outputs();
next_edges_.reserve(num_outputs);
add_next_edge(impl::gradient_edge(base_var));
for (const auto i : c10::irange(1, num_outputs)) {
add_next_edge(fn->next_edge(i));
}
}
// common code between apply/apply_with_saved
template <typename T>
inline variable_list CopySlices::apply_impl(
variable_list&& inputs,
const T& call_fn) {
check_input_variables("CopySlices", inputs, 1, -1, true);
auto& grad = inputs[0];
if (!grad.defined()) {
return variable_list(num_outputs());
}
// Acquire lock to here protect thread safety on fn
// see Note [Thread Safety on Autograd Node]
std::lock_guard<std::mutex> lock(mutex_);
if (!fn) {
throw std::runtime_error(ERR_BACKWARD_TWICE);
}
auto result =
grad.new_empty_strided_symint(base.sym_sizes(), base.sym_strides());
result.copy_(grad);
at::Tensor grad_slice;
if (view_fn) {
grad_slice = (*view_fn)(result);
} else {
auto offset = view.sym_storage_offset() - base.sym_storage_offset();
grad_slice =
result.as_strided_symint(view.sym_sizes(), view.sym_strides(), offset);
}
// See Note [View + Inplace update for view tensor] For more details on this
// block Since the gradient edge for the 0th input is different between `this`
// and `fn`, make sure that the one from `fn` has the same metadata in the
// current GraphTask's exec_info as the one on `this`.
const auto exec_info = get_current_graph_task_exec_info();
if (exec_info && !exec_info->empty()) {
const auto& fn_edge = fn->next_edge(0);
const auto& this_edge = this->next_edge(0);
TORCH_INTERNAL_ASSERT(fn_edge.is_valid() == this_edge.is_valid());
if (fn_edge.is_valid()) {
const auto fn_next_node = fn_edge.function.get();
auto it = exec_info->find(fn_next_node);
if (it == exec_info->end()) {
// Node is not in the exec_info already
if (task_should_compute_output(0)) {
// And we need gradient for the corresponding output
add_node_to_current_graph_task_exec_info(fn_next_node);
// There is no need to remove this after execution because we are
// guaranteed that this->next_edge(0) must be in the history of
// fn->next_edge(0) (we cannot easily assert this as it might be far
// away if there were many chained views). This means that, since
// fn->next_edge(0) was not needed (no exec_info entry for it), we
// know that nothing downstream of fn->next_edge(0) is needed either
// (otherwise the whole path from that Node to this->next_edge(0)
// would be needed as well). This means that no other Node will ever
// look at fn->next_edge(0) metadata and thus there is no need to
// clean them up.
}
} else {
TORCH_INTERNAL_ASSERT(
it->second.should_execute() == task_should_compute_output(0));
}
}
}
// Sanity check that the graph was never modified after the fact (it is
// read-only!)
TORCH_INTERNAL_ASSERT(num_outputs() == fn->num_outputs());
for (const auto i : c10::irange(1, this->num_outputs())) {
TORCH_INTERNAL_ASSERT(
fn->next_edge(i).function.get() == this->next_edge(i).function.get());
}
// TODO: We clone grad_slice because we modify it below and "fn" might save
// it for the backward of res. We might be able to avoid the clone() if
// double-backprop is disabled.
auto res = call_fn({grad_slice.clone(at::MemoryFormat::Contiguous)});
variable_list grad_inputs(num_outputs());
for (const auto i : c10::irange(res.size())) {
if (task_should_compute_output(i)) {
if (!res[i].defined()) {
// If the output is not defined, treat it as if it was a zero tensor.
// This can happen if users define a custom Function.
continue;
}
if (i == 0) {
grad_slice.copy_(res[i]);
// NOLINTNEXTLINE(clang-analyzer-cplusplus.Move)
grad_inputs[i] = std::move(result); // NOLINT(bugprone-use-after-move)
} else {
grad_inputs[i] = std::move(res[i]);
}
}
}
return grad_inputs;
}
void CopySlices::release_variables() {
// Acquire lock to here protect thread safety on fn
std::lock_guard<std::mutex> lock(mutex_);
fn = nullptr;
}
void CopySlices::compiled_args(CompiledNodeArgs& args) {
TORCH_CHECK(!view_fn, "view_fn not supported by compiled autograd")
TORCH_INTERNAL_ASSERT((bool)fn);
args.collect(base);
args.collect(view);
args.collect(fn);
fn->compiled_args(args);
}
variable_list CopySlices::apply_with_saved(
const variable_list& grads,
SwapSavedVariables& saved) {
saved.before(base);
saved.before(view);
int call_count = 0;
variable_list result = apply_impl(
variable_list(grads),
[this, &saved, &call_count](const variable_list& inputs2) {
call_count++;
return fn->apply_with_saved(inputs2, saved);
});
TORCH_INTERNAL_ASSERT(call_count == 1);
saved.after(base);
saved.after(view);
return result;
}
auto CopySlices::apply(variable_list&& inputs1) -> variable_list {
return apply_impl(std::move(inputs1), [this](variable_list&& inputs2) {
return (*fn)(std::move(inputs2));
});
}
} // namespace autograd
} // namespace torch