forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinit.cpp
172 lines (149 loc) · 5.29 KB
/
init.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
#include <Python.h>
#include <c10/util/irange.h>
#include <torch/csrc/autograd/functions/accumulate_grad.h>
#include <torch/csrc/autograd/functions/basic_ops.h>
#include <torch/csrc/autograd/functions/pybind.h>
#include <torch/csrc/autograd/functions/tensor.h>
#include <torch/csrc/autograd/generated/python_functions.h>
#include <torch/csrc/autograd/python_cpp_function.h>
#include <torch/csrc/autograd/python_variable.h>
#ifdef USE_DISTRIBUTED
#include <torch/csrc/distributed/autograd/functions/sendrpc_backward.h>
#endif
#include <torch/csrc/jit/python/python_tracer.h>
#include <torch/csrc/utils/pybind.h>
#include <torch/csrc/utils/python_numbers.h>
#include <torch/csrc/utils/python_strings.h>
#include <utility>
using namespace torch::autograd;
struct DelayedErrorCtor {
DelayedError* operator()(PyObject* args) {
TORCH_CHECK(
PyTuple_GET_SIZE(args) == 2,
"Requires two arguments, got ",
PyTuple_GET_SIZE(args));
auto arg1 = PyTuple_GET_ITEM(args, 0);
TORCH_CHECK(THPUtils_checkString(arg1), "argument 'msg' must be a string");
std::string msg = THPUtils_unpackString(arg1);
auto arg2 = PyTuple_GET_ITEM(args, 1);
TORCH_CHECK(
THPUtils_checkLong(arg2), "argument 'num_inputs' must be an int");
auto num_inputs = THPUtils_unpackLong(arg2);
return new DelayedError(std::move(msg), num_inputs);
}
};
struct UndefinedGradCtor {
UndefinedGrad* operator()(PyObject* args) {
TORCH_CHECK(
PyTuple_GET_SIZE(args) == 0,
"Requires zero arguments, got ",
PyTuple_GET_SIZE(args));
return new UndefinedGrad();
}
};
struct NoCtor {
Node* operator()(PyObject* args) {
throw std::runtime_error("Cannot construct");
}
};
template <typename C, typename T>
static void addClass(
PyObject* module,
PyTypeObject& type,
const char* name,
PyGetSetDef* function_properties = nullptr,
PyMethodDef* function_methods = nullptr) {
createForwardFunctionPyTypeObject<T>(
type, name, function_properties, function_methods);
Py_INCREF(&type);
PyModule_AddObject(module, name, (PyObject*)&type);
registerCppFunction(typeid(C), &type);
}
template <
typename T,
typename ValueT,
typename ParamsT,
ValueT ParamsT::*ptr,
typename ConvertArgT,
PyObject* (*Convert)(ConvertArgT)>
PyObject* getTupleAttr(PyObject* obj, void* _unused) {
HANDLE_TH_ERRORS
THPCppFunction* self = (THPCppFunction*)obj;
auto& arr = ((T*)(self->cdata.get()))->*ptr;
auto num_elems = arr.size();
THPObjectPtr py_tuple(PyTuple_New(num_elems));
if (!py_tuple)
return nullptr;
for (const auto i : c10::irange(num_elems)) {
PyTuple_SET_ITEM(py_tuple.get(), i, Convert(arr[i]));
}
return py_tuple.release();
END_HANDLE_TH_ERRORS
}
template <
typename T,
typename ValueT,
typename ParamsT,
ValueT ParamsT::*ptr,
typename ConvertArgT,
PyObject* (*Convert)(ConvertArgT)>
PyObject* getValueAttr(PyObject* obj, void* _unused) {
HANDLE_TH_ERRORS
THPCppFunction* self = (THPCppFunction*)obj;
auto& val = ((T*)(self->cdata.get()))->*ptr;
return Convert(val);
END_HANDLE_TH_ERRORS
}
static PyObject* accumulateGradVar(PyObject* _self, void* _unused) {
THPCppFunction* self = (THPCppFunction*)_self;
auto grad_acc = (AccumulateGrad*)self->cdata.get();
return THPVariable_Wrap(grad_acc->variable);
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables,cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays)
static struct PyGetSetDef accumulate_grad_properties[] = {
THP_FUNCTION_DEFAULT_PROPERTIES,
{(char*)"variable", accumulateGradVar, nullptr, nullptr, nullptr},
{nullptr}};
void THPAutograd_initFunctions() {
THPObjectPtr module(PyModule_New("torch._C._functions"));
if (!module)
throw python_error();
static PyTypeObject AccumulateGradClass;
addClass<AccumulateGrad, NoCtor>(
module,
AccumulateGradClass,
"AccumulateGrad",
accumulate_grad_properties);
static PyTypeObject ErrorClass;
addClass<Error, NoCtor>(module, ErrorClass, "Error");
static PyTypeObject NotImplementedClass;
addClass<NotImplemented, NoCtor>(
module, NotImplementedClass, "NotImplemented");
static PyTypeObject DelayedErrorClass;
addClass<DelayedError, DelayedErrorCtor>(
module, DelayedErrorClass, "DelayedError");
static PyTypeObject UndefinedGradBackwardClass;
addClass<UndefinedGradBackward, NoCtor>(
module, UndefinedGradBackwardClass, "UndefinedGradBackward");
static PyTypeObject UndefinedGradClass;
addClass<UndefinedGrad, UndefinedGradCtor>(
module, UndefinedGradClass, "UndefinedGrad");
static PyTypeObject CopyBackwardsClass;
addClass<CopyBackwards, NoCtor>(module, CopyBackwardsClass, "CopyBackwards");
#ifdef USE_DISTRIBUTED
static PyTypeObject SendRpcBackwardClass;
addClass<torch::distributed::autograd::SendRpcBackward, NoCtor>(
module, SendRpcBackwardClass, "SendRpcBackward");
#endif
static PyTypeObject CopySlicesClass;
addClass<CopySlices, NoCtor>(module, CopySlicesClass, "CopySlices");
generated::initialize_autogenerated_functions(module);
auto c_module = THPObjectPtr(PyImport_ImportModule("torch._C"));
if (!c_module)
throw python_error();
Py_INCREF(module.get());
if (PyModule_AddObject(c_module, "_functions", module) < 0) {
Py_DECREF(module.get());
throw python_error();
}
}