forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgen_test_model.py
257 lines (226 loc) · 8.38 KB
/
gen_test_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import io
import sys
import yaml
from android_api_module import AndroidAPIModule
from builtin_ops import TSBuiltinOpsModule, TSCollectionOpsModule
from math_ops import (
BlasLapackOpsModule,
ComparisonOpsModule,
OtherMathOpsModule,
PointwiseOpsModule,
ReductionOpsModule,
SpectralOpsModule,
)
from nn_ops import (
NNActivationModule,
NNConvolutionModule,
NNDistanceModule,
NNDropoutModule,
NNLinearModule,
NNLossFunctionModule,
NNNormalizationModule,
NNPaddingModule,
NNPoolingModule,
NNRecurrentModule,
NNShuffleModule,
NNSparseModule,
NNTransformerModule,
NNUtilsModule,
NNVisionModule,
)
from quantization_ops import (
FusedQuantModule,
GeneralQuantModule,
# DynamicQuantModule,
StaticQuantModule,
)
from sampling_ops import SamplingOpsModule
from tensor_ops import (
TensorCreationOpsModule,
TensorIndexingOpsModule,
TensorOpsModule,
TensorTypingOpsModule,
TensorViewOpsModule,
)
from torchvision_models import (
MobileNetV2Module,
MobileNetV2VulkanModule,
Resnet18Module,
)
import torch
from torch.jit.mobile import _load_for_lite_interpreter
test_path_ios = "ios/TestApp/models/"
test_path_android = "android/pytorch_android/src/androidTest/assets/"
production_ops_path = "test/mobile/model_test/model_ops.yaml"
coverage_out_path = "test/mobile/model_test/coverage.yaml"
all_modules = {
# math ops
"pointwise_ops": PointwiseOpsModule(),
"reduction_ops": ReductionOpsModule(),
"comparison_ops": ComparisonOpsModule(),
"spectral_ops": SpectralOpsModule(),
"other_math_ops": OtherMathOpsModule(),
"blas_lapack_ops": BlasLapackOpsModule(),
# sampling
"sampling_ops": SamplingOpsModule(),
# tensor ops
"tensor_general_ops": TensorOpsModule(),
"tensor_creation_ops": TensorCreationOpsModule(),
"tensor_indexing_ops": TensorIndexingOpsModule(),
"tensor_typing_ops": TensorTypingOpsModule(),
"tensor_view_ops": TensorViewOpsModule(),
# nn ops
"convolution_ops": NNConvolutionModule(),
"pooling_ops": NNPoolingModule(),
"padding_ops": NNPaddingModule(),
"activation_ops": NNActivationModule(),
"normalization_ops": NNNormalizationModule(),
"recurrent_ops": NNRecurrentModule(),
"transformer_ops": NNTransformerModule(),
"linear_ops": NNLinearModule(),
"dropout_ops": NNDropoutModule(),
"sparse_ops": NNSparseModule(),
"distance_function_ops": NNDistanceModule(),
"loss_function_ops": NNLossFunctionModule(),
"vision_function_ops": NNVisionModule(),
"shuffle_ops": NNShuffleModule(),
"nn_utils_ops": NNUtilsModule(),
# quantization ops
"general_quant_ops": GeneralQuantModule(),
# TODO(sdym@fb.com): fix and re-enable dynamic_quant_ops
# "dynamic_quant_ops": DynamicQuantModule(),
"static_quant_ops": StaticQuantModule(),
"fused_quant_ops": FusedQuantModule(),
# TorchScript buildin ops
"torchscript_builtin_ops": TSBuiltinOpsModule(),
"torchscript_collection_ops": TSCollectionOpsModule(),
# vision
"mobilenet_v2": MobileNetV2Module(),
"mobilenet_v2_vulkan": MobileNetV2VulkanModule(),
"resnet18": Resnet18Module(),
# android api module
"android_api_module": AndroidAPIModule(),
}
models_need_trace = [
"static_quant_ops",
]
def calcOpsCoverage(ops):
with open(production_ops_path) as input_yaml_file:
production_ops_dict = yaml.safe_load(input_yaml_file)
production_ops = set(production_ops_dict["root_operators"].keys())
all_generated_ops = set(ops)
covered_ops = production_ops.intersection(all_generated_ops)
uncovered_ops = production_ops - covered_ops
coverage = round(100 * len(covered_ops) / len(production_ops), 2)
# weighted coverage (take op occurances into account)
total_occurances = sum(production_ops_dict["root_operators"].values())
covered_ops_dict = {
op: production_ops_dict["root_operators"][op] for op in covered_ops
}
uncovered_ops_dict = {
op: production_ops_dict["root_operators"][op] for op in uncovered_ops
}
covered_occurances = sum(covered_ops_dict.values())
occurances_coverage = round(100 * covered_occurances / total_occurances, 2)
print(f"\n{len(uncovered_ops)} uncovered ops: {uncovered_ops}\n")
print(f"Generated {len(all_generated_ops)} ops")
print(
f"Covered {len(covered_ops)}/{len(production_ops)} ({coverage}%) production ops"
)
print(
f"Covered {covered_occurances}/{total_occurances} ({occurances_coverage}%) occurances"
)
print(f"pytorch ver {torch.__version__}\n")
with open(coverage_out_path, "w") as f:
yaml.safe_dump(
{
"_covered_ops": len(covered_ops),
"_production_ops": len(production_ops),
"_generated_ops": len(all_generated_ops),
"_uncovered_ops": len(uncovered_ops),
"_coverage": round(coverage, 2),
"uncovered_ops": uncovered_ops_dict,
"covered_ops": covered_ops_dict,
"all_generated_ops": sorted(all_generated_ops),
},
f,
)
def getModuleFromName(model_name):
if model_name not in all_modules:
print("Cannot find test model for " + model_name)
return None, []
module = all_modules[model_name]
if not isinstance(module, torch.nn.Module):
module = module.getModule()
has_bundled_inputs = False # module.find_method("get_all_bundled_inputs")
if model_name in models_need_trace:
module = torch.jit.trace(module, [])
else:
module = torch.jit.script(module)
ops = torch.jit.export_opnames(module)
print(ops)
# try to run the model
runModule(module)
return module, ops
def runModule(module):
buffer = io.BytesIO(module._save_to_buffer_for_lite_interpreter())
buffer.seek(0)
lite_module = _load_for_lite_interpreter(buffer)
if lite_module.find_method("get_all_bundled_inputs"):
# run with the first bundled input
input = lite_module.run_method("get_all_bundled_inputs")[0]
lite_module.forward(*input)
else:
# assuming model has no input
lite_module()
# generate all models in the given folder.
# If it's "on the fly" mode, add "_temp" suffix to the model file.
def generateAllModels(folder, on_the_fly=False):
all_ops = []
for name in all_modules:
module, ops = getModuleFromName(name)
all_ops = all_ops + ops
path = folder + name + ("_temp.ptl" if on_the_fly else ".ptl")
module._save_for_lite_interpreter(path)
print("model saved to " + path)
calcOpsCoverage(all_ops)
# generate/update a given model for storage
def generateModel(name):
module, ops = getModuleFromName(name)
if module is None:
return
path_ios = test_path_ios + name + ".ptl"
path_android = test_path_android + name + ".ptl"
module._save_for_lite_interpreter(path_ios)
module._save_for_lite_interpreter(path_android)
print("model saved to " + path_ios + " and " + path_android)
def main(argv):
if argv is None or len(argv) != 1:
print(
"""
This script generate models for mobile test. For each model we have a "storage" version
and an "on-the-fly" version. The "on-the-fly" version will be generated during test,and
should not be committed to the repo.
The "storage" version is for back compatibility # test (a model generated today should
run on master branch in the next 6 months). We can use this script to update a model that
is no longer supported.
- use 'python gen_test_model.py android-test' to generate on-the-fly models for android
- use 'python gen_test_model.py ios-test' to generate on-the-fly models for ios
- use 'python gen_test_model.py android' to generate checked-in models for android
- use 'python gen_test_model.py ios' to generate on-the-fly models for ios
- use 'python gen_test_model.py <model_name_no_suffix>' to update the given storage model
"""
)
return
if argv[0] == "android":
generateAllModels(test_path_android, on_the_fly=False)
elif argv[0] == "ios":
generateAllModels(test_path_ios, on_the_fly=False)
elif argv[0] == "android-test":
generateAllModels(test_path_android, on_the_fly=True)
elif argv[0] == "ios-test":
generateAllModels(test_path_ios, on_the_fly=True)
else:
generateModel(argv[0])
if __name__ == "__main__":
main(sys.argv[1:])