forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_union_pep604.py
1063 lines (874 loc) · 32.8 KB
/
test_union_pep604.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Owner(s): ["oncall: jit"]
import io
import os
import sys
import unittest
from enum import Enum
from textwrap import dedent
from typing import Dict, List, Optional, Tuple, Union
import torch
from torch.testing import FileCheck
# Make the helper files in test/ importable
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(pytorch_test_dir)
from torch.testing._internal.jit_utils import JitTestCase, make_global
if __name__ == "__main__":
raise RuntimeError(
"This test file is not meant to be run directly, use:\n\n"
"\tpython test/test_jit.py TESTNAME\n\n"
"instead."
)
@unittest.skipIf(sys.version_info < (3, 10), "Requires Python 3.10")
class TestUnion(JitTestCase):
"""
This class tests the functionality of `Union`.
Note: It's important to be able to refine the type of a `Union` to
one of its internal types. Currently, there are differences in the
way Python expects `isinstance` checks and the way TorchScript
expects `isinstance` checks. This means that we can't use
`checkScript` in our test cases because either the eager mode or the
script mode wouldn't run! So, some test cases have separate but
equivalent functions to emulate `checkScript`.
"""
def test_check_union_annotation(self):
def test_func(a: int | float, b: Optional[int]):
return 0
scripted_func = torch.jit.script(test_func)
graph_rep = str(scripted_func.graph)
code_rep = str(scripted_func.code)
# TS graph IR for Union should be annotated as Union()
FileCheck().check("Union(").check("int?").run(graph_rep)
# Serialized code for Union should be annotated as Union[]
FileCheck().check("Union[").check("Optional[int]").run(code_rep)
self.checkScript(test_func, (5, 6))
# this shouldn't error out
torch._C.parse_ir(str(scripted_func.graph))
def test_union_with_scalar_values(self):
def fn(x: int | float) -> str:
return "foo"
self.checkScript(fn, (1,))
self.checkScript(fn, (1.0,))
scripted = torch.jit.script(fn)
with self.assertRaisesRegex(
RuntimeError,
"Expected a member of"
r" Union\[float, int\] but "
"instead found type str",
):
scripted("1")
def test_union_with_collections(self):
def fn(x: Dict[str, int] | List[int]) -> str:
return "foo"
self.checkScript(fn, ({"foo": 1, "bar": 2, "baz": 3},))
self.checkScript(fn, ([1, 2, 3],))
scripted = torch.jit.script(fn)
with self.assertRaisesRegex(
RuntimeError,
"Expected a member of"
r" Union\[List\[int\], Dict\[str, "
r"int\]\] but instead found type "
r"Dict\[str, str\]",
):
scripted({"foo": "bar", "baz": "qux"})
with self.assertRaisesRegex(
RuntimeError,
"Expected a member of"
r" Union\[List\[int\], Dict\[str, "
r"int\]\] but instead found type "
r"List\[str\]",
):
scripted(["foo", "bar", "baz"])
with self.assertRaisesRegex(
RuntimeError,
"Expected a member of"
r" Union\[List\[int\], Dict\[str, "
r"int\]\] but instead found type "
"str",
):
scripted("1")
def test_union_with_enum(self):
class Color(Enum):
RED = 1
GREEN = 2
make_global(Color)
def fn(x: str | Color) -> str:
return "foo"
self.checkScript(fn, (Color.RED,))
self.checkScript(fn, ("red",))
scripted = torch.jit.script(fn)
with self.assertRaisesRegex(
RuntimeError,
"Expected a member of"
r" Union\[__torch__.jit.test_union_pep604."
r"Color, str\] but instead found "
"type int",
):
scripted(1)
def test_union_in_class_constructor(self):
@torch.jit.script # noqa: B903
class A: # noqa: B903
def __init__(self, x: int | str) -> None:
self.x = x
def fn(x: str | int) -> A:
return A(x)
self.assertEqual(fn("foo").x, "foo")
self.assertEqual(fn(1).x, 1)
scripted = torch.jit.script(fn)
with self.assertRaisesRegex(
RuntimeError,
"Expected a member of"
r" Union\[int, str\] but instead "
r"found type List\[str\]",
):
scripted(["foo", "bar", "baz"])
def test_union_return_type(self):
def fn(x: int) -> int | str:
return "foo"
self.checkScript(fn, (1,))
def test_union_as_annotation(self):
def fn() -> int | str:
x: int | str = "foo"
return x
self.checkScript(fn, ())
def test_union_as_annotation_in_typed_container(self):
def fn() -> None:
l: List[int | str] = []
u1: int | str = "foo"
u2: int | str = 1
l.append(u1)
l.append(u2)
self.checkScript(fn, ())
def test_union_as_annotation_py2(self):
def fn():
# type: () -> int | str
x: int | str = "foo"
return x
self.checkScript(fn, ())
def test_union_as_internal_tuple_type(self):
def fn():
t: Tuple[int | str, int | str] = (1, "foo")
return t
self.checkScript(fn, ())
def test_union_variable_can_be_reassigned(self):
@torch.jit.script
def aux1(i: int):
return int(i**2)
@torch.jit.script
def aux2(s: str):
return s + s
def fn() -> int | str:
x: int | str = "foo"
i: int = 1
x = i
y: int = aux1(x)
z: str = aux2(str(y))
x = z
return x
self.checkScript(fn, ())
def test_union_does_not_replace_existing_annotated_type(self):
def fn():
x: List[int] = [1, 2, 3]
x.append("foo")
return x
with self.assertRaisesRegex(RuntimeError, "Could not match type str"):
scripted = torch.jit.script(fn)
scripted()
def test_union_does_not_replace_existing_annotated_type_union(self):
def fn():
x: List[int | str] = [1, "foo", 3]
x.append(2.0)
return x
with self.assertRaisesRegex(RuntimeError, "Could not match type float"):
scripted = torch.jit.script(fn)
scripted()
def test_union_does_not_replace_existing_annotated_type_empty_container(self):
def fn():
x: List[int] = []
x.append("foo")
return x
with self.assertRaisesRegex(RuntimeError, "Could not match type str"):
scripted = torch.jit.script(fn)
scripted()
def test_unions_of_unions_are_flattened(self):
@torch.jit.script
def fn(x: (int | str) | float) -> str:
return "foo"
s = fn.graph
FileCheck().check("x : Union(float, int, str)").run(s)
def test_unions_of_a_single_argument_vanish(self):
@torch.jit.script
def fn(x: Union[int]) -> str:
return "foo"
s = fn.graph
FileCheck().check("x : int").run(s)
def test_union_redundant_arguments_are_skipped(self):
@torch.jit.script
def fn(x: int | str | int) -> str:
return "foo"
s = fn.graph
FileCheck().check("x : Union(int, str)").run(s)
def test_union_redundant_arguments_are_skipped_optional(self):
@torch.jit.script
def fn(x: int | Optional[float] | Optional[int]) -> str:
return "foo"
s = fn.graph
FileCheck().check("x : Union(float, int, NoneType)").run(s)
def test_union_redundant_arguments_are_skipped_subtyping(self):
@torch.jit.script
def fn(x: str | Tuple[Optional[int], int] | Tuple[int, int]) -> str:
return "foo"
s = fn.graph
FileCheck().check("x : Union((int?, int), str)").run(s)
def test_union_redundant_arguments_are_skipped_container(self):
@torch.jit.script
def fn(x: List[str] | List[float] | List[str]) -> str:
return "foo"
s = fn.graph
FileCheck().check("x : Union(float[], str[])").run(s)
def test_union_argument_order_is_ignored(self):
@torch.jit.script
def fn1(x: int | str) -> str:
return "foo"
@torch.jit.script
def fn2(x: str | int) -> str:
return "foo"
for s in (fn1.graph, fn2.graph):
FileCheck().check("x : Union(int, str)").run(s)
def test_union_argument_order_is_ignored_container(self):
@torch.jit.script
def fn1(x: List[str] | List[int]) -> str:
return "foo"
@torch.jit.script
def fn2(x: List[int] | List[str]) -> str:
return "foo"
for s in (fn1.graph, fn2.graph):
FileCheck().check("x : Union(int[], str[])").run(s)
def test_union_T_None_is_equivalent_to_optional_T(self):
@torch.jit.script
def inner(x: int | None) -> int:
if x is not None:
return x
else:
return 5
@torch.jit.script
def fn1() -> int:
a: Optional[int] = 5
b: Optional[int] = None
a_ = inner(a)
b_ = inner(b)
return a_ + b_
self.assertEqual(fn1(), 10)
@torch.jit.script
def inner2(x: Optional[int]) -> int:
if x is not None:
return x
else:
return 5
@torch.jit.script
def fn2() -> int:
a: int | None = 5
b: int | None = None
a_ = inner(a)
b_ = inner(b)
return a_ + b_
self.assertEqual(fn2(), 10)
@unittest.expectedFailure
def test_union_optional_of_union_return(self):
@torch.jit.script
def fn() -> None | str | int:
y: Optional[int | str] = "foo"
return y
@unittest.expectedFailure
def test_union_optional_of_union_is_flattened(self):
@torch.jit.script
def fn(flag: int) -> str | int | None:
y: int | str | None = "foo"
if flag == 0:
x: Optional[int | str] = y
elif flag == 1:
x: Optional[int | str] = 1
else:
x: Optional[int | str] = None
return x
# Can't use `checkScript` because it will flag the fact that
# the original code has `Optional[Union[int, str]]` but the
# saved/loaded code has `Union[int, NoneType, str]` (even
# though this is exactly what we want)
self.assertEqual(fn(0), "foo")
self.assertEqual(fn(1), 1)
self.assertEqual(fn(2), None)
buffer = io.BytesIO()
torch.jit.save(fn, buffer)
buffer = io.BytesIO(buffer.getvalue())
l = torch.jit.load(buffer)
s = l.code
FileCheck().check("Union[int, NoneType, str]").check(
"Union[int, NoneType, str]"
).run(s)
def test_union_subclasses_larger_union(self):
def fn() -> int | str | torch.Tensor:
x: int | str = "foo"
return x
self.checkScript(fn, ())
# TODO: We would like to eventually support this. The issue is being
# tracked at https://github.com/pytorch/pytorch/issues/58167
def test_union_as_dict_key(self):
def fn():
x: Dict[int | str, str] = {}
x["foo"] = "bar"
x[1] = 2
return x[1]
with self.assertRaisesRegex(
RuntimeError,
"only int, float, "
"complex, Tensor, device and string keys "
"are supported",
):
torch.jit.script(fn)
def test_union_as_dict_value(self):
def fn():
x: Dict[str, int | str] = {}
x["foo"] = "bar"
x["baz"] = 2
return x["baz"]
self.checkScript(fn, ())
def test_union_module_with_union_instance_variable(self):
class M(torch.nn.Module):
x: int | str
def __init__(self, x: int | str):
super().__init__()
self.x: int | str = x
def forward(self, y: int | str):
self.x = y
return self.x
self.checkModule(
M(
2,
),
(1,),
)
self.checkModule(M("bar"), ("foo",))
def test_union_module_with_union_class_variable(self):
class M(torch.nn.Module):
x: int | str = "foo"
def __init__(self, y: int):
super().__init__()
x = y
def forward(self, z: str):
x = z
return x
self.checkModule(M(1), ("foo",))
def test_union_type_refinement(self):
def fn(x: int | str) -> str:
if isinstance(x, str):
z = x + "bar"
return x
else:
return "baz"
self.checkScript(fn, ("foo",))
self.checkScript(fn, (1,))
def test_union_type_refinement_union_rhs(self):
def fn(x: int) -> str:
if torch.jit.isinstance(x, int | str):
return "bar"
else:
return "baz"
self.checkScript(fn, (1,))
def test_union_type_refinement_tuple_rhs(self):
def fn(x: int | float | List[str]) -> str:
if isinstance(x, (int, float)):
if isinstance(x, int):
return str(x)
else:
return "foo"
else:
if len(x):
return x[0]
else:
return "bar"
self.checkScript(fn, (1,))
self.checkScript(fn, (1.0,))
self.checkScript(fn, (["a", "b", "c"],))
def test_union_type_refinement_tuple_rhs_noncontained_type(self):
def fn(x: int | List[str]) -> str:
if isinstance(x, (int, float)):
y = x + x
return str(y)
else:
if len(x):
return x[0]
else:
return "bar"
self.checkScript(fn, (1,))
self.checkScript(fn, (["a", "b", "c"],))
def test_union_type_refinement_tuple_rhs_union(self):
@torch.jit.script
def fn(x: int) -> str:
if torch.jit.isinstance(x, (int | str, float)):
y = x + x
return str(y)
else:
return "foo"
# TODO: There's currently an unrelated bug in
# `torch.jit.isinstance` that makes it fail for tuple literals.
# Posted here: https://github.com/pytorch/pytorch/issues/60095
# Change `assertEqual` to `checkScript` when the bug is fixed
self.assertEqual(fn(1), "2")
def test_union_type_refinement_statically_false(self):
@torch.jit.script
def fn(x: int) -> str:
if torch.jit.isinstance(x, (str | float, List[str], str)):
z = x + "foo"
return z
else:
return "bar"
s = fn.graph
# Check that we don't have any branching statements
FileCheck().check_not("block0()").check_not("block1()").run(s)
def test_union_type_refinement_statically_true(self):
@torch.jit.script
def fn(x: List[int] | int) -> List[int] | int:
if not torch.jit.isinstance(x, (int, List[int])):
return x
else:
l = [1, 2, 3]
y: List[int] | int = l
return y
s = fn.graph
# Check that we don't have any branching statements
FileCheck().check_not("block0()").check_not("block1()").run(s)
def test_union_type_refinement_partial_static_refinement_tuple_rhs(self):
def fn(x: List[int] | int) -> int:
if torch.jit.isinstance(x, (int, float, str)):
# We should know that `x` is an `int` here
z = x + 1
return z
else:
return 100
self.checkScript(fn, ([1, 2, 3],))
self.checkScript(fn, (1,))
def test_union_type_refinement_partial_static_refinement_union_rhs(self):
def fn(x: List[int] | int) -> int:
if torch.jit.isinstance(x, int | float | str):
# We should know that `x` is an `int` here
z = x + 1
return z
else:
return 100
self.checkScript(fn, ([1, 2, 3],))
self.checkScript(fn, (1,))
def test_union_type_refinement_internal_declaration(self):
def fn(flag: bool) -> str:
x: int | str | None = None
if flag:
y = "foo"
else:
y = 1
if isinstance(x, str):
return x
else:
return "bar"
self.checkScript(fn, (True,))
self.checkScript(fn, (False,))
def test_union_branching_with_union_return_and_homogenous_types(self):
def fn(x: int) -> int | str:
if x % 2:
return "foo"
else:
return "bar"
self.checkScript(fn, (1,))
self.checkScript(fn, (8,))
def test_union_branching_does_not_autoinfer_undeclared_union(self):
def fn(x: int) -> str:
if x % 2:
y = "foo"
else:
y = x
if isinstance(y, str):
return y
else:
return "bar"
with self.assertRaisesRegex(
RuntimeError,
"y is set to type str"
" in the true branch and type int "
"in the false branch",
):
torch.jit.script(fn)
def test_union_branching_does_not_widen_existing_inferred_type(self):
def fn(x: int) -> str:
y = "foo"
if x % 2:
y = "bar"
else:
y = x
if isinstance(y, str):
return y
else:
return "baz"
with self.assertRaisesRegex(
RuntimeError,
"previously had type "
"str but is now being assigned to a"
" value of type int",
):
torch.jit.script(fn)
def test_union_schema_matching_on_internal_type(self):
def fn(x: List[int] | Dict[str, int]) -> int:
if torch.jit.isinstance(x, List[int]):
return x[0]
else:
return list(x.values())[0]
self.checkScript(fn, ([1, 2, 3],))
self.checkScript(fn, ({"foo": 1, "bar": 2, "baz": 3},))
def test_union_subtractive_refinement(self):
def fn(x: List[int] | int) -> int:
if not isinstance(x, int):
x.append(1)
return x[0]
else:
return x
self.checkScript(fn, (1,))
self.checkScript(fn, ([1, 2, 3],))
def test_union_subtractive_refinement_with_container(self):
def fn(x: List[int] | int) -> int:
if not torch.jit.isinstance(x, List[int]):
return x
else:
x.append(1)
return x[0]
self.checkScript(fn, (1,))
self.checkScript(fn, ([1, 2, 3],))
def test_union_memory_aliasing(self):
def fn():
x: List[torch.Tensor] = []
z: List[Optional[List[torch.Tensor]]] = []
z.append(x)
x_alias = z[0]
if torch.jit.isinstance(x_alias, List[torch.Tensor]):
x_alias.append(torch.tensor(3))
return x
self.checkScript(fn, ())
def test_union_serialization_preserves_type_annotations(self):
# This function will fail after being torch.jit.save'd and
# torch.jit.load'd if the type annotations aren't preserved
# for Union during serialization. We need the `Union[str, int]`
# annotation to make sure that `y` is typed as a Union instead
# of as a str in one branch and an int in the other
def fn(x: int) -> str:
if x % 2:
y: str | int = "bar"
else:
y: str | int = x
if isinstance(y, str):
return y
else:
return "baz"
self.checkScript(fn, (1,))
self.checkScript(fn, (8,))
def _assert_passes(self, template: str, ann: str, lhs: str):
code = template.format(ann=ann, lhs=lhs)
self.checkScript(code, (), name="fn")
def _assert_raises(self, template: str, ann: str, lhs: str, msg: str):
code = template.format(ann=ann, lhs=lhs)
with self.assertRaisesRegex(RuntimeError, msg):
cu = torch.jit.CompilationUnit(code, _frames_up=1)
string_frontend = getattr(cu, "fn") # noqa: B009
def test_union_with_list_assignment(self):
template = dedent(
"""
def fn():
x: {ann} = {lhs}
if torch.jit.isinstance(x, List[torch.Tensor]):
x.append(torch.tensor(3))
return x
"""
)
lhs = {
"list_literal_empty": "[]",
"list_literal_of_tensor": "[torch.arange(3), torch.arange(5)]",
"list_literal_of_str": '["foo", "bar", "baz"]',
"list_literal_of_mixed": "[torch.arange(5), 1]",
"list_comprehension_of_tensor": "[torch.add(x, 1) for x in [torch.arange(3), torch.arange(5)]]",
"list_comprehension_of_str": '[x + "!" for x in ["foo", "bar", "baz"]]',
"list_comprehension_of_mixed": "[torch.add(1, x) for x in [torch.arange(5), 1]]",
}
"""
List[str] | List[torch.Tensor]
"""
self._assert_raises(
template,
"List[str] | List[torch.Tensor]",
lhs["list_literal_empty"],
"there are multiple possible List type "
"candidates in the Union annotation",
)
self._assert_passes(
template, "List[str] | List[torch.Tensor]", lhs["list_literal_of_tensor"]
)
self._assert_passes(
template, "List[str] | List[torch.Tensor]", lhs["list_literal_of_str"]
)
self._assert_raises(
template,
"List[str] | List[torch.Tensor]",
lhs["list_literal_of_mixed"],
"none of those types match the types of the" " given list elements",
)
self._assert_passes(
template,
"List[str] | List[torch.Tensor]",
lhs["list_comprehension_of_tensor"],
)
self._assert_passes(
template, "List[str] | List[torch.Tensor]", lhs["list_comprehension_of_str"]
)
# TODO: Support mixed list comprehensions
self._assert_raises(
template,
"List[str] | List[torch.Tensor]",
lhs["list_comprehension_of_mixed"],
"Arguments for call are not valid",
)
"""
int | torch.Tensor
"""
self._assert_raises(
template,
"int | torch.Tensor",
lhs["list_literal_empty"],
"Expected an Union type annotation with an " "inner List type",
)
self._assert_raises(
template,
"int | torch.Tensor",
lhs["list_literal_of_tensor"],
"Expected an Union type annotation with an " "inner List type",
)
self._assert_raises(
template,
"int | torch.Tensor",
lhs["list_comprehension_of_tensor"],
"Expected an Union type annotation with an " "inner List type",
)
"""
List[torch.Tensor] | int
"""
self._assert_passes(
template, "List[torch.Tensor] | int", lhs["list_literal_empty"]
)
self._assert_passes(
template, "List[torch.Tensor] | int", lhs["list_literal_of_tensor"]
)
self._assert_raises(
template,
"List[torch.Tensor] | int",
lhs["list_literal_of_str"],
r"List type annotation `List\[Tensor\]` did "
"not match the types of the given list "
"elements",
)
self._assert_raises(
template,
"List[torch.Tensor] | int",
lhs["list_literal_of_mixed"],
r"List type annotation `List\[Tensor\]` did "
"not match the types of the given list "
"elements",
)
self._assert_passes(
template, "List[torch.Tensor] | int", lhs["list_comprehension_of_tensor"]
)
self._assert_raises(
template,
"List[torch.Tensor] | int",
lhs["list_comprehension_of_str"],
r"List type annotation `List\[Tensor\]` did "
"not match the types of the given list "
"elements",
)
# TODO(@ansley): Support mixed list comprehensions
self._assert_raises(
template,
"List[torch.Tensor] | int",
lhs["list_comprehension_of_mixed"],
"Arguments for call are not valid",
)
def test_union_with_dict_assignment(self):
template = dedent(
"""
def fn():
x: {ann} = {lhs}
if torch.jit.isinstance(x, Dict[str, torch.Tensor]):
x["foo"] = torch.tensor(3)
return x
"""
)
lhs = {
"dict_literal_empty": "{}",
"dict_literal_of_str_tensor": '{"foo" : torch.arange(3), "bar" : torch.arange(5)}',
"dict_literal_of_str_int": '{"foo" : 1, "bar" : 2}',
"dict_literal_of_mixed": '{"foo" : torch.arange(3), "bar" : 2}',
"dict_comprehension_of_str_tensor": '{x : torch.add(y, 1) for x, y in \
zip(["foo", "bar"], [torch.arange(3), torch.arange(5)])}',
"dict_comprehension_of_str_int": '{x : torch.add(y, 1) for x, y in \
zip(["foo", "bar"], [1, 2]}',
"dict_comprehension_of_mixed": '{x : torch.add(y, 1) for x, y in \
zip(["foo", "bar"], [torch.arange(3), 2])}',
"dict_keyword": "dict(foo=torch.arange(3), baz=torch.arange(5))",
"dict_keyword_with_iterable": 'dict([("foo", torch.arange(3)), ("bar", torch.arange(5))])',
"dict_keyword_with_empty_iterable": "dict([])",
"dict_keyword_with_internal_aggregate_function": 'dict(zip(["foo", "bar"], [torch.arange(3), torch.arange(5)])',
"dict_keyword_with_mapping": 'dict({"foo" : torch.arange(3), "bar" : torch.arange(5)})',
"dict_keyword_with_mapping_and_kwargs": 'dict({"foo" : torch.arange(3), "bar" : torch.arange(5)}, baz=torch.arange(7))',
}
"""
Dict[str, torch.Tensor] | Dict[str, int]
"""
self._assert_raises(
template,
"List[str] | List[torch.Tensor]",
lhs["dict_literal_empty"],
"Expected an Union type annotation with an " "inner Dict type",
)
self._assert_passes(
template,
"Dict[str, torch.Tensor] | Dict[str, int]",
lhs["dict_literal_of_str_tensor"],
)
self._assert_passes(
template,
"Dict[str, torch.Tensor] | Dict[str, int]",
lhs["dict_literal_of_str_int"],
)
self._assert_raises(
template,
"Dict[str, torch.Tensor] | Dict[str, int]",
lhs["dict_literal_of_mixed"],
"none of those dict types can hold the "
"types of the given keys and values",
)
# TODO: String frontend does not support tuple unpacking
# https://github.com/pytorch/pytorch/issues/64096
# self._assert_passes(template, "Dict[str, torch.Tensor] | Dict[str, int]",
# lhs["dict_comprehension_of_str_tensor"])
# self._assert_passes(template, "Dict[str, torch.Tensor] | Dict[str, int]",
# lhs["dict_comprehension_of_str_int"])
# self._assert_raises(template, "Dict[str, torch.Tensor] | Dict[str, int]",
# lhs["dict_comprehension_of_mixed"],
# "foobar")
# self._assert_passes(template,
# "Dict[str, torch.Tensor] | Dict[str, int]",
# lhs["dict_keyword_with_internal_aggregate_function"])
# TODO(@ansley): Follow-up project needed for full type
# inference with dict keyword (supported for dict comprehension
# and dict literal already; should not be a blocker for anyone)
self._assert_raises(
template,
"Dict[str, torch.Tensor] | Dict[str, int]",
lhs["dict_keyword"],
"full type inference is not yet supported",
)
self._assert_raises(
template,
"Dict[str, torch.Tensor] | Dict[str, int]",
lhs["dict_keyword_with_iterable"],
"full type inference is not yet supported",
)
self._assert_raises(
template,
"Dict[str, torch.Tensor] | Dict[str, int]",
lhs["dict_keyword_with_empty_iterable"],
"full type inference is not yet supported",
)
self._assert_raises(
template,
"Dict[str, torch.Tensor] | Dict[str, int]",
lhs["dict_keyword_with_mapping"],
"full type inference is not yet supported",
)
self._assert_raises(
template,
"Dict[str, torch.Tensor] | Dict[str, int]",
lhs["dict_keyword_with_mapping_and_kwargs"],
"full type inference is not yet supported",
)
"""
int | torch.Tensor
"""
self._assert_raises(
template,
"int | torch.Tensor",
lhs["dict_literal_empty"],
"Expected an Union type annotation with " "an inner Dict type",
)
self._assert_raises(
template,
"int | torch.Tensor",
lhs["dict_literal_of_str_tensor"],
"Expected an Union type annotation with " "an inner Dict type",
)
# See above--string frontend does not support tuple unpacking
# self._assert_raises(template, "int | torch.Tensor",
# lhs["dict_comprehension_of_tensor"],
# "foobar")
"""
Dict[str, torch.Tensor] | int
"""
self._assert_passes(
template, "Dict[str, torch.Tensor] | int", lhs["dict_literal_empty"]
)
self._assert_passes(