forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_torchbind.py
469 lines (377 loc) · 16 KB
/
test_torchbind.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
# Owner(s): ["oncall: jit"]
import copy
import io
import os
import sys
import unittest
from typing import Optional
import torch
from torch.testing._internal.common_utils import skipIfTorchDynamo
# Make the helper files in test/ importable
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(pytorch_test_dir)
from torch.testing import FileCheck
from torch.testing._internal.common_utils import (
find_library_location,
IS_FBCODE,
IS_MACOS,
IS_SANDCASTLE,
IS_WINDOWS,
)
from torch.testing._internal.jit_utils import JitTestCase
if __name__ == "__main__":
raise RuntimeError(
"This test file is not meant to be run directly, use:\n\n"
"\tpython test/test_jit.py TESTNAME\n\n"
"instead."
)
@skipIfTorchDynamo("skipping as a precaution")
class TestTorchbind(JitTestCase):
def setUp(self):
if IS_SANDCASTLE or IS_MACOS or IS_FBCODE:
raise unittest.SkipTest("non-portable load_library call used in test")
lib_file_path = find_library_location("libtorchbind_test.so")
if IS_WINDOWS:
lib_file_path = find_library_location("torchbind_test.dll")
torch.ops.load_library(str(lib_file_path))
def test_torchbind(self):
def test_equality(f, cmp_key):
obj1 = f()
obj2 = torch.jit.script(f)()
return (cmp_key(obj1), cmp_key(obj2))
def f():
val = torch.classes._TorchScriptTesting._Foo(5, 3)
val.increment(1)
return val
test_equality(f, lambda x: x)
with self.assertRaisesRegex(RuntimeError, "Expected a value of type 'int'"):
val = torch.classes._TorchScriptTesting._Foo(5, 3)
val.increment("foo")
def f():
ss = torch.classes._TorchScriptTesting._StackString(["asdf", "bruh"])
return ss.pop()
test_equality(f, lambda x: x)
def f():
ss1 = torch.classes._TorchScriptTesting._StackString(["asdf", "bruh"])
ss2 = torch.classes._TorchScriptTesting._StackString(["111", "222"])
ss1.push(ss2.pop())
return ss1.pop() + ss2.pop()
test_equality(f, lambda x: x)
# test nn module with prepare_scriptable function
class NonJitableClass:
def __init__(self, int1, int2):
self.int1 = int1
self.int2 = int2
def return_vals(self):
return self.int1, self.int2
class CustomWrapper(torch.nn.Module):
def __init__(self, foo):
super().__init__()
self.foo = foo
def forward(self) -> None:
self.foo.increment(1)
return
def __prepare_scriptable__(self):
int1, int2 = self.foo.return_vals()
foo = torch.classes._TorchScriptTesting._Foo(int1, int2)
return CustomWrapper(foo)
foo = CustomWrapper(NonJitableClass(1, 2))
jit_foo = torch.jit.script(foo)
def test_torchbind_take_as_arg(self):
global StackString # see [local resolution in python]
StackString = torch.classes._TorchScriptTesting._StackString
def foo(stackstring):
# type: (StackString)
stackstring.push("lel")
return stackstring
script_input = torch.classes._TorchScriptTesting._StackString([])
scripted = torch.jit.script(foo)
script_output = scripted(script_input)
self.assertEqual(script_output.pop(), "lel")
def test_torchbind_return_instance(self):
def foo():
ss = torch.classes._TorchScriptTesting._StackString(["hi", "mom"])
return ss
scripted = torch.jit.script(foo)
# Ensure we are creating the object and calling __init__
# rather than calling the __init__wrapper nonsense
fc = (
FileCheck()
.check("prim::CreateObject()")
.check('prim::CallMethod[name="__init__"]')
)
fc.run(str(scripted.graph))
out = scripted()
self.assertEqual(out.pop(), "mom")
self.assertEqual(out.pop(), "hi")
def test_torchbind_return_instance_from_method(self):
def foo():
ss = torch.classes._TorchScriptTesting._StackString(["hi", "mom"])
clone = ss.clone()
ss.pop()
return ss, clone
scripted = torch.jit.script(foo)
out = scripted()
self.assertEqual(out[0].pop(), "hi")
self.assertEqual(out[1].pop(), "mom")
self.assertEqual(out[1].pop(), "hi")
def test_torchbind_def_property_getter_setter(self):
def foo_getter_setter_full():
fooGetterSetter = torch.classes._TorchScriptTesting._FooGetterSetter(5, 6)
# getX method intentionally adds 2 to x
old = fooGetterSetter.x
# setX method intentionally adds 2 to x
fooGetterSetter.x = old + 4
new = fooGetterSetter.x
return old, new
self.checkScript(foo_getter_setter_full, ())
def foo_getter_setter_lambda():
foo = torch.classes._TorchScriptTesting._FooGetterSetterLambda(5)
old = foo.x
foo.x = old + 4
new = foo.x
return old, new
self.checkScript(foo_getter_setter_lambda, ())
def test_torchbind_def_property_just_getter(self):
def foo_just_getter():
fooGetterSetter = torch.classes._TorchScriptTesting._FooGetterSetter(5, 6)
# getY method intentionally adds 4 to x
return fooGetterSetter, fooGetterSetter.y
scripted = torch.jit.script(foo_just_getter)
out, result = scripted()
self.assertEqual(result, 10)
with self.assertRaisesRegex(RuntimeError, "can't set attribute"):
out.y = 5
def foo_not_setter():
fooGetterSetter = torch.classes._TorchScriptTesting._FooGetterSetter(5, 6)
old = fooGetterSetter.y
fooGetterSetter.y = old + 4
# getY method intentionally adds 4 to x
return fooGetterSetter.y
with self.assertRaisesRegexWithHighlight(
RuntimeError,
"Tried to set read-only attribute: y",
"fooGetterSetter.y = old + 4",
):
scripted = torch.jit.script(foo_not_setter)
def test_torchbind_def_property_readwrite(self):
def foo_readwrite():
fooReadWrite = torch.classes._TorchScriptTesting._FooReadWrite(5, 6)
old = fooReadWrite.x
fooReadWrite.x = old + 4
return fooReadWrite.x, fooReadWrite.y
self.checkScript(foo_readwrite, ())
def foo_readwrite_error():
fooReadWrite = torch.classes._TorchScriptTesting._FooReadWrite(5, 6)
fooReadWrite.y = 5
return fooReadWrite
with self.assertRaisesRegexWithHighlight(
RuntimeError, "Tried to set read-only attribute: y", "fooReadWrite.y = 5"
):
scripted = torch.jit.script(foo_readwrite_error)
def test_torchbind_take_instance_as_method_arg(self):
def foo():
ss = torch.classes._TorchScriptTesting._StackString(["mom"])
ss2 = torch.classes._TorchScriptTesting._StackString(["hi"])
ss.merge(ss2)
return ss
scripted = torch.jit.script(foo)
out = scripted()
self.assertEqual(out.pop(), "hi")
self.assertEqual(out.pop(), "mom")
def test_torchbind_return_tuple(self):
def f():
val = torch.classes._TorchScriptTesting._StackString(["3", "5"])
return val.return_a_tuple()
scripted = torch.jit.script(f)
tup = scripted()
self.assertEqual(tup, (1337.0, 123))
def test_torchbind_save_load(self):
def foo():
ss = torch.classes._TorchScriptTesting._StackString(["mom"])
ss2 = torch.classes._TorchScriptTesting._StackString(["hi"])
ss.merge(ss2)
return ss
scripted = torch.jit.script(foo)
self.getExportImportCopy(scripted)
def test_torchbind_lambda_method(self):
def foo():
ss = torch.classes._TorchScriptTesting._StackString(["mom"])
return ss.top()
scripted = torch.jit.script(foo)
self.assertEqual(scripted(), "mom")
def test_torchbind_class_attr_recursive(self):
class FooBar(torch.nn.Module):
def __init__(self, foo_model):
super().__init__()
self.foo_mod = foo_model
def forward(self) -> int:
return self.foo_mod.info()
def to_ivalue(self):
torchbind_model = torch.classes._TorchScriptTesting._Foo(
self.foo_mod.info(), 1
)
return FooBar(torchbind_model)
inst = FooBar(torch.classes._TorchScriptTesting._Foo(2, 3))
scripted = torch.jit.script(inst.to_ivalue())
self.assertEqual(scripted(), 6)
def test_torchbind_class_attribute(self):
class FooBar1234(torch.nn.Module):
def __init__(self):
super().__init__()
self.f = torch.classes._TorchScriptTesting._StackString(["3", "4"])
def forward(self):
return self.f.top()
inst = FooBar1234()
scripted = torch.jit.script(inst)
eic = self.getExportImportCopy(scripted)
assert eic() == "deserialized"
for expected in ["deserialized", "was", "i"]:
assert eic.f.pop() == expected
def test_torchbind_getstate(self):
class FooBar4321(torch.nn.Module):
def __init__(self):
super().__init__()
self.f = torch.classes._TorchScriptTesting._PickleTester([3, 4])
def forward(self):
return self.f.top()
inst = FooBar4321()
scripted = torch.jit.script(inst)
eic = self.getExportImportCopy(scripted)
# NB: we expect the values {7, 3, 3, 1} as __getstate__ is defined to
# return {1, 3, 3, 7}. I tried to make this actually depend on the
# values at instantiation in the test with some transformation, but
# because it seems we serialize/deserialize multiple times, that
# transformation isn't as you would it expect it to be.
assert eic() == 7
for expected in [7, 3, 3, 1]:
assert eic.f.pop() == expected
def test_torchbind_deepcopy(self):
class FooBar4321(torch.nn.Module):
def __init__(self):
super().__init__()
self.f = torch.classes._TorchScriptTesting._PickleTester([3, 4])
def forward(self):
return self.f.top()
inst = FooBar4321()
scripted = torch.jit.script(inst)
copied = copy.deepcopy(scripted)
assert copied.forward() == 7
for expected in [7, 3, 3, 1]:
assert copied.f.pop() == expected
def test_torchbind_python_deepcopy(self):
class FooBar4321(torch.nn.Module):
def __init__(self):
super().__init__()
self.f = torch.classes._TorchScriptTesting._PickleTester([3, 4])
def forward(self):
return self.f.top()
inst = FooBar4321()
copied = copy.deepcopy(inst)
assert copied() == 7
for expected in [7, 3, 3, 1]:
assert copied.f.pop() == expected
def test_torchbind_tracing(self):
class TryTracing(torch.nn.Module):
def __init__(self):
super().__init__()
self.f = torch.classes._TorchScriptTesting._PickleTester([3, 4])
def forward(self):
return torch.ops._TorchScriptTesting.take_an_instance(self.f)
traced = torch.jit.trace(TryTracing(), ())
self.assertEqual(torch.zeros(4, 4), traced())
def test_torchbind_pass_wrong_type(self):
with self.assertRaisesRegex(RuntimeError, "but instead found type 'Tensor'"):
torch.ops._TorchScriptTesting.take_an_instance(torch.rand(3, 4))
def test_torchbind_tracing_nested(self):
class TryTracingNest(torch.nn.Module):
def __init__(self):
super().__init__()
self.f = torch.classes._TorchScriptTesting._PickleTester([3, 4])
class TryTracing123(torch.nn.Module):
def __init__(self):
super().__init__()
self.nest = TryTracingNest()
def forward(self):
return torch.ops._TorchScriptTesting.take_an_instance(self.nest.f)
traced = torch.jit.trace(TryTracing123(), ())
self.assertEqual(torch.zeros(4, 4), traced())
def test_torchbind_pickle_serialization(self):
nt = torch.classes._TorchScriptTesting._PickleTester([3, 4])
b = io.BytesIO()
torch.save(nt, b)
b.seek(0)
nt_loaded = torch.load(b)
for exp in [7, 3, 3, 1]:
self.assertEqual(nt_loaded.pop(), exp)
def test_torchbind_instantiate_missing_class(self):
with self.assertRaisesRegex(
RuntimeError,
"Tried to instantiate class 'foo.IDontExist', but it does not exist!",
):
torch.classes.foo.IDontExist(3, 4, 5)
def test_torchbind_optional_explicit_attr(self):
class TorchBindOptionalExplicitAttr(torch.nn.Module):
foo: Optional[torch.classes._TorchScriptTesting._StackString]
def __init__(self):
super().__init__()
self.foo = torch.classes._TorchScriptTesting._StackString(["test"])
def forward(self) -> str:
foo_obj = self.foo
if foo_obj is not None:
return foo_obj.pop()
else:
return "<None>"
mod = TorchBindOptionalExplicitAttr()
scripted = torch.jit.script(mod)
def test_torchbind_no_init(self):
with self.assertRaisesRegex(RuntimeError, "torch::init"):
x = torch.classes._TorchScriptTesting._NoInit()
def test_profiler_custom_op(self):
inst = torch.classes._TorchScriptTesting._PickleTester([3, 4])
with torch.autograd.profiler.profile() as prof:
torch.ops._TorchScriptTesting.take_an_instance(inst)
found_event = False
for e in prof.function_events:
if e.name == "_TorchScriptTesting::take_an_instance":
found_event = True
self.assertTrue(found_event)
def test_torchbind_getattr(self):
foo = torch.classes._TorchScriptTesting._StackString(["test"])
self.assertEqual(None, getattr(foo, "bar", None))
def test_torchbind_attr_exception(self):
foo = torch.classes._TorchScriptTesting._StackString(["test"])
with self.assertRaisesRegex(AttributeError, "does not have a field"):
foo.bar
def test_lambda_as_constructor(self):
obj_no_swap = torch.classes._TorchScriptTesting._LambdaInit(4, 3, False)
self.assertEqual(obj_no_swap.diff(), 1)
obj_swap = torch.classes._TorchScriptTesting._LambdaInit(4, 3, True)
self.assertEqual(obj_swap.diff(), -1)
def test_staticmethod(self):
def fn(inp: int) -> int:
return torch.classes._TorchScriptTesting._StaticMethod.staticMethod(inp)
self.checkScript(fn, (1,))
def test_default_args(self):
def fn() -> int:
obj = torch.classes._TorchScriptTesting._DefaultArgs()
obj.increment(5)
obj.decrement()
obj.decrement(2)
obj.divide()
obj.scale_add(5)
obj.scale_add(3, 2)
obj.divide(3)
return obj.increment()
self.checkScript(fn, ())
def gn() -> int:
obj = torch.classes._TorchScriptTesting._DefaultArgs(5)
obj.increment(3)
obj.increment()
obj.decrement(2)
obj.divide()
obj.scale_add(3)
obj.scale_add(3, 2)
obj.divide(2)
return obj.decrement()
self.checkScript(gn, ())