forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_sparse.py
120 lines (85 loc) · 3.61 KB
/
test_sparse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
# Owner(s): ["oncall: jit"]
import io
import unittest
import torch
from torch.testing._internal.common_utils import IS_WINDOWS, TEST_MKL
from torch.testing._internal.jit_utils import JitTestCase
class TestSparse(JitTestCase):
def test_freeze_sparse_coo(self):
class SparseTensorModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.a = torch.rand(3, 4).to_sparse()
self.b = torch.rand(3, 4).to_sparse()
def forward(self, x):
return x + self.a + self.b
x = torch.rand(3, 4).to_sparse()
m = SparseTensorModule()
unfrozen_result = m.forward(x)
m.eval()
frozen = torch.jit.freeze(torch.jit.script(m))
frozen_result = frozen.forward(x)
self.assertEqual(unfrozen_result, frozen_result)
buffer = io.BytesIO()
torch.jit.save(frozen, buffer)
buffer.seek(0)
loaded_model = torch.jit.load(buffer)
loaded_result = loaded_model.forward(x)
self.assertEqual(unfrozen_result, loaded_result)
def test_serialize_sparse_coo(self):
class SparseTensorModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.a = torch.rand(3, 4).to_sparse()
self.b = torch.rand(3, 4).to_sparse()
def forward(self, x):
return x + self.a + self.b
x = torch.rand(3, 4).to_sparse()
m = SparseTensorModule()
expected_result = m.forward(x)
buffer = io.BytesIO()
torch.jit.save(torch.jit.script(m), buffer)
buffer.seek(0)
loaded_model = torch.jit.load(buffer)
loaded_result = loaded_model.forward(x)
self.assertEqual(expected_result, loaded_result)
@unittest.skipIf(IS_WINDOWS or not TEST_MKL, "Need MKL to run CSR matmul")
def test_freeze_sparse_csr(self):
class SparseTensorModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.a = torch.rand(4, 4).to_sparse_csr()
self.b = torch.rand(4, 4).to_sparse_csr()
def forward(self, x):
return x.matmul(self.a).matmul(self.b)
x = torch.rand(4, 4).to_sparse_csr()
m = SparseTensorModule()
unfrozen_result = m.forward(x)
m.eval()
frozen = torch.jit.freeze(torch.jit.script(m))
frozen_result = frozen.forward(x)
self.assertEqual(unfrozen_result.to_dense(), frozen_result.to_dense())
buffer = io.BytesIO()
torch.jit.save(frozen, buffer)
buffer.seek(0)
loaded_model = torch.jit.load(buffer)
loaded_result = loaded_model.forward(x)
self.assertEqual(unfrozen_result.to_dense(), loaded_result.to_dense())
@unittest.skipIf(IS_WINDOWS or not TEST_MKL, "Need MKL to run CSR matmul")
def test_serialize_sparse_csr(self):
class SparseTensorModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.a = torch.rand(4, 4).to_sparse_csr()
self.b = torch.rand(4, 4).to_sparse_csr()
def forward(self, x):
return x.matmul(self.a).matmul(self.b)
x = torch.rand(4, 4).to_sparse_csr()
m = SparseTensorModule()
expected_result = m.forward(x)
buffer = io.BytesIO()
torch.jit.save(torch.jit.script(m), buffer)
buffer.seek(0)
loaded_model = torch.jit.load(buffer)
loaded_result = loaded_model.forward(x)
self.assertEqual(expected_result.to_dense(), loaded_result.to_dense())