forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_profiler.py
284 lines (236 loc) · 10.1 KB
/
test_profiler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
# Owner(s): ["oncall: jit"]
import os
import sys
import torch
from torch.testing._internal.common_utils import skipIfTorchDynamo
# Make the helper files in test/ importable
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(pytorch_test_dir)
from torch.testing._internal.jit_utils import FileCheck, JitTestCase, warmup_backward
if __name__ == "__main__":
raise RuntimeError(
"This test file is not meant to be run directly, use:\n\n"
"\tpython test/test_jit.py TESTNAME\n\n"
"instead."
)
@skipIfTorchDynamo()
class TestProfiler(JitTestCase):
def setUp(self):
self.prev_exec = torch._C._jit_set_profiling_executor(True)
self.prev_profiling = torch._C._get_graph_executor_optimize(True)
self.inline_autodiff = torch._C._debug_set_autodiff_subgraph_inlining(False)
self.texpr_fuser_state = torch._C._jit_texpr_fuser_enabled()
self.can_fuse_on_cpu = torch._C._jit_can_fuse_on_cpu()
torch._C._jit_set_texpr_fuser_enabled(True)
torch._C._jit_override_can_fuse_on_cpu(True)
self.default_dtype = torch.get_default_dtype()
self.old_reduction_enabled = torch._C._jit_set_texpr_reductions_enabled(True)
torch.set_default_dtype(torch.double)
self.old_fusion_inlining = torch._C._debug_get_fusion_group_inlining()
torch._C._debug_set_fusion_group_inlining(False)
self.old_te_must_use_llvm_cpu = torch._C._jit_get_te_must_use_llvm_cpu()
torch._C._jit_set_te_must_use_llvm_cpu(False)
def tearDown(self):
torch._C._jit_set_profiling_executor(self.prev_exec)
torch._C._get_graph_executor_optimize(self.prev_profiling)
torch._C._debug_set_autodiff_subgraph_inlining(self.inline_autodiff)
torch._C._jit_set_texpr_fuser_enabled(self.texpr_fuser_state)
torch._C._jit_override_can_fuse_on_cpu(self.can_fuse_on_cpu)
torch.set_default_dtype(self.default_dtype)
torch._C._jit_set_texpr_reductions_enabled(self.old_reduction_enabled)
torch._C._debug_set_fusion_group_inlining(self.old_fusion_inlining)
torch._C._jit_set_te_must_use_llvm_cpu(self.old_te_must_use_llvm_cpu)
def test_tensor_type_not_determined_by_inputs(self):
@torch.jit.script
def scalar_type_input(x, y, z):
return x + y + 4 + z.item()
x = torch.tensor([2, 2])
scalar_type_input(x, x, torch.tensor(1))
scalar_type_input(x, x, torch.tensor(1))
scalar_type_input(x, x, torch.tensor(1.0))
g = torch.jit.last_executed_optimized_graph()
# item & add should not get pulled into the fusion group -
# we expect to see Fusion Group (item / add) Fusion Group in ir dump
FileCheck().check("TensorExpr").check("Scalar = aten::item").check_next(
"Tensor = aten::add"
).check("TensorExpr").run(g)
@torch.jit.script
def non_const_dtype(x, y, cond: bool):
dtype = torch.int16 if cond else torch.int32
return (x + y + 3).sum(dtype=dtype)
non_const_dtype(x, x, True)
non_const_dtype(x, x, True)
g = torch.jit.last_executed_optimized_graph()
# because dtype is non-const, sum should not get pulled into the Fusion Group
FileCheck().check("TensorExpr").check("TensorExpr").check_not("aten::sum").run(
g
)
def test_specialize_backward(self):
def test_fuse(a, b):
c = a * b
d = c * b
return d
test_fuse.__disable_jit_function_caching__ = True
scripted_f = torch.jit.script(test_fuse)
x = torch.ones(1, requires_grad=True)
y = torch.ones(1, requires_grad=True)
scripted_f(x, y)
b = scripted_f(x, y)
warmup_backward(b)
g = torch.jit.last_executed_optimized_graph()
# Backward has an if node guarding specializations,
# within the if node true block there is only one if node
# that guards a tensorexpr group
optimized_block = next(g.findNode("prim::If").blocks())
if_nodes = list(optimized_block.findAllNodes("prim::If"))
self.assertEqual(len(if_nodes), 1)
FileCheck().check("Group[Subgraph").run(str(if_nodes[0]))
# no broadcasts occurred, sum_to_size have been specialized out
self.assertIsNone(optimized_block.findNode("aten::_grad_sum_to_size"))
broadcast_f = torch.jit.script(test_fuse)
x = torch.ones([2, 2], requires_grad=True)
y = torch.ones([1], requires_grad=True)
broadcast_f(x, y)
b = broadcast_f(x, y)
b.backward(torch.ones([2, 2], dtype=torch.float), retain_graph=True)
b.backward(torch.ones([2, 2], dtype=torch.float))
# warmup_backward(b, torch.ones([2, 2], dtype=torch.float))
g = torch.jit.last_executed_optimized_graph()
optimized_block = next(g.findNode("prim::If").blocks())
# broadcasts occurred, currently expect to see aten::_grad_sum_to_size
self.assertIsNotNone(optimized_block.findNode("aten::_grad_sum_to_size"))
def test_specialized_types(self):
@torch.jit.script
def test_fuse(a, b):
c = a * b
d = c * b
return d
x = torch.tensor([0.5])
for _ in range(3):
test_fuse(x, x)
g = torch.jit.last_executed_optimized_graph()
# Types should remain specialized for typecheck outputs & fusion outputs
FileCheck().check("Double(").check_same("prim::TypeCheck").check_same(
"\n"
).check("Double").check_same("TensorExpr").run(g)
# other outputs should not be specialized
FileCheck().check("Tensor = prim::If").run(g)
def test_aliasing_merge(self):
@torch.jit.script
def foo(a, b):
c = a * b
d = c * b
d.add_(b)
e = d * b
return d + e
x = torch.ones(1)
y = torch.ones(1)
foo(x, y)
b = foo(x, y)
g = torch.jit.last_executed_optimized_graph()
self.assertEqual(len(list(g.findAllNodes("prim::TypeCheck"))), 2)
FileCheck().check("TensorExpr").check("aten::add_").check("TensorExpr").run(g)
def test_use_not_profiled(self):
def foo(t1, t2, t3, t4, t: float):
h = t1 + t2 + t3 + t4
if t > 0.5:
# Putting a use of t1 in a never-executed conditional prevents
return t1 + 1
return h
t = torch.rand(8, dtype=torch.float)
foo_script = torch.jit.script(foo)
for _ in range(torch._C._jit_get_num_profiled_runs() + 1):
foo_script(t, t, t, t, 0.1)
self.assertEqual(foo(t, t, t, t, 0.1), foo_script(t, t, t, t, 0.1))
g = torch.jit.last_executed_optimized_graph()
# all adds fused
FileCheck().check("graph").check_not("aten::add").check("prim::If").run(g)
def test_not_fusing_scalar_ops(self):
@torch.jit.script
def foo(x: int, y: int):
return x + y + 2 + 4 + 5 + 6
foo(1, 2)
foo(2, 3)
g = torch.jit.last_executed_optimized_graph()
FileCheck().check_not("TensorExpr").run(g)
def test_not_optimizing_property(self):
@torch.jit.script
def foo(x, y):
return x + y + 1 + 2 + 3, x.size()
x = torch.ones(1)
foo(x, x)
foo(x, x)
g = torch.jit.last_executed_optimized_graph()
FileCheck().check("aten::size").run(g)
x = torch.ones([2, 3, 5])
self.assertEqual(foo(x, x), (x + x + 1 + 2 + 3, x.size()))
def test_fallback_graph_not_specialized(self):
@torch.jit.script
def foo(a, b):
c = a * b
d = c * b
e = d * b
return d + e
x = torch.ones(1)
y = torch.ones(1)
foo(x, y)
foo(x, y)
g = torch.jit.last_executed_optimized_graph()
FileCheck().check("CallFunction").check_next("Tensor = prim::TupleUnpack").run(
g
)
def test_autograd_fallback_graph(self):
@torch.jit.script
def foo(a, b):
c = a * b
d = c * b
e = d * b
return d + e
x = torch.ones(1, requires_grad=True)
y = torch.ones(1, requires_grad=True)
foo(x, y)
b = foo(x, y)
b.backward(torch.ones([1], dtype=torch.float), retain_graph=True)
b.backward(torch.ones([1], dtype=torch.float))
g = torch.jit.last_executed_optimized_graph()
FileCheck().check("fallback_function").check_next("CallFunction").run(g)
def test_tensor_constant(self):
def foo(a, b):
return a + b + torch.tensor([2])
x = torch.ones(1, requires_grad=False)
foo_script = torch.jit.script(foo)
foo_script(x, x)
foo_script(x, x)
self.assertEqual(foo_script(x, x), foo(x, x))
g = torch.jit.last_executed_optimized_graph()
FileCheck().check_count("aten::add", 2, exactly=True).run(g)
def test_local_fusion_strategy(self):
@torch.jit.script
def foo(x):
return x + x + x
torch.jit.set_fusion_strategy([("STATIC", 1)])
for _ in range(3):
foo(torch.rand([10]))
torch.jit.set_fusion_strategy([("STATIC", 10)])
for i in range(10):
foo(torch.rand([i]))
foo(torch.rand([i]))
g = torch.jit.last_executed_optimized_graph()
FileCheck().check_count(":TensorExprGroup", 2, exactly=True).run(g)
def test_iterative_fusion(self):
@torch.jit.script
def foo(a, b, c, d):
a = a + b
b.add_(3)
c = c + b + d
a = a + 1
return a, c
x = torch.ones(1, requires_grad=False)
foo(x, x, x, x)
foo(x, x, x, x)
# when we iterate through the block, we will start
# by fusing a = a + b with a = a + 1
# if we were to continue iteration from that fusion point,
# would miss the fusion opportunity of c = c + d + b
g = torch.jit.last_executed_optimized_graph()
self.assertEqual(len(list(g.findAllNodes("prim::TensorExprGroup"))), 2)