forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_peephole.py
891 lines (714 loc) · 29 KB
/
test_peephole.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
# Owner(s): ["oncall: jit"]
import unittest
from typing import Callable, List
import torch
from torch import nn
from torch.testing import FileCheck
from torch.testing._internal.jit_utils import _inline_everything, JitTestCase, RUN_CUDA
if __name__ == "__main__":
raise RuntimeError(
"This test file is not meant to be run directly, use:\n\n"
"\tpython test/test_jit.py TESTNAME\n\n"
"instead."
)
class TestPeephole(JitTestCase):
def test_peephole_with_writes(self):
def test_write(x):
s = 0
s += x
s += x
return s
self.checkScript(test_write, (torch.ones(4, 4),))
def test_peephole_with_non_output_writes(self):
@torch.jit.ignore
def nomnom(x):
pass
def test_write(x):
t = torch.ones_like(x)
z = x.clone()
y = z + 0
z.add_(t)
# this makes sure z isn't blasted out of existence
# because it isn't returned or used in a side-effectful
# way
nomnom(z)
return y + y
a = torch.ones(4, 4)
j = self.checkScript(test_write, (a,))
def test_peephole_no_output_aliasing(self):
def test_peephole(x):
y = x + 0
return x, y
a = torch.ones(4, 4)
j = self.checkScript(test_peephole, (a,))
r1, r2 = j(a)
self.assertNotEqual(r1.data_ptr(), r2.data_ptr())
def test_peephole(self):
a = torch.tensor([0.4])
b = torch.tensor([0.7])
c = torch.tensor([0], dtype=torch.int32)
def f(x, y):
return x.type_as(y)
tf = torch.jit.trace(f, (a, b))
FileCheck().check("type_as").run(str(tf.graph))
self.run_pass("peephole", tf.graph)
FileCheck().check_not("type_as").run(str(tf.graph))
tf2 = torch.jit.trace(f, (a, c))
s = str(tf2.graph)
self.run_pass("peephole", tf2.graph)
self.assertEqual(s, str(s))
def test_peephole_dynamic(self):
def f(x, y):
return x.type_as(y)
fn = torch.jit.script(f)
s = str(fn.graph)
torch._C._jit_pass_peephole(fn.graph)
self.assertEqual(s, str(fn.graph))
def test_peephole_list_ops(self):
@torch.jit.script
def foo(x, y, z):
return len([x, y, z])
self.run_pass("peephole", foo.graph)
FileCheck().check("value=3").check_next("return").run(foo.graph)
@torch.jit.script
def foo(x, y, z):
li = [x, y, z]
for i in range(len(x)):
li.append(x)
return len([x, y, z])
self.run_pass("peephole", foo.graph)
FileCheck().check_not("aten::len").run(foo.graph)
@torch.jit.script
def foo(x, y, z):
li = [x, y, z]
return li[1], li[-2]
FileCheck().check("aten::__getitem__").run(foo.graph)
self.run_pass("peephole", foo.graph)
FileCheck().check_not("aten::__getitem__").run(foo.graph)
@torch.jit.script
def foo(x, y, z):
li = [x, y, z]
return li[-7]
self.run_pass("peephole", foo.graph)
FileCheck().check("aten::__getitem__").run(foo.graph)
@torch.jit.script
def foo(x, y, z):
li = [x, y, z]
for i in range(len(x)):
li.append(x)
return li[-2]
self.run_pass("peephole", foo.graph)
FileCheck().check("aten::__getitem__").run(foo.graph)
@unittest.skipIf(not RUN_CUDA, "cpp tests require CUDA")
def test_peephole_cuda(self):
a = torch.tensor([0.4], device="cpu")
b = torch.tensor([0.7], device="cuda")
c = torch.tensor([0.7], device="cuda")
def f(x, y):
return x.type_as(y)
trace = torch.jit.trace(f, (a, c))
s = str(trace.graph)
self.run_pass("peephole", trace.graph)
self.assertEqual(s, str(trace.graph))
trace = torch.jit.trace(f, (b, c))
self.run_pass("peephole", trace.graph)
self.run_pass("dce", trace.graph)
FileCheck().check_not("type_as").run(str(trace.graph))
@_inline_everything
def test_peephole_type_refinements(self):
def refine(x):
# type: (Optional[Tensor]) -> Tensor
return x if x is not None else torch.tensor(3)
@torch.jit.script
def test():
return refine(torch.tensor(4))
FileCheck().check("prim::unchecked_cast").run(test.graph)
self.run_pass("peephole", test.graph)
FileCheck().check_not("prim::unchecked_cast").run(test.graph)
# refinement not optimzied out
def is_int_tensor(x):
scalar = x.item()
if isinstance(scalar, int):
return scalar + 3
else:
return 8
self.checkScript(is_int_tensor, (torch.tensor(2),))
self.checkScript(is_int_tensor, (torch.tensor(2.5),))
graph = torch.jit.script(is_int_tensor).graph
self.run_pass("peephole", graph)
FileCheck().check("prim::unchecked_cast").run(graph)
def test_short_circuit_optimization(self):
@torch.jit.script
def const_expressions(x):
# type: (int) -> Tuple[bool, bool]
return x == 1 and False, x == 1 or True
self.run_pass("constant_propagation", const_expressions.graph)
FileCheck().check_not("prim::If").check_not("aten::eq").run(
const_expressions.graph
)
self.assertEqual(const_expressions(1), (False, True))
@torch.jit.script
def redundant_expressions(x):
# type: (int) -> Tuple[bool, bool]
return x == 1 and True, x == 1 or False
self.run_pass("peephole", redundant_expressions.graph)
self.assertEqual(redundant_expressions(1), (True, True))
self.assertEqual(redundant_expressions(0), (False, False))
# and True / or False are removed from graph
FileCheck().check("aten::eq").check_not("prim::If").run(
redundant_expressions.graph
)
def test_conv_dim_folding(self):
modules = [nn.Conv1d, nn.Conv2d, nn.Conv3d]
for mod in modules:
class ConvDim(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv = mod(3, 32, kernel_size=3, stride=2, bias=False)
def forward(self, x):
x = self.conv(x)
return x.dim()
conv_dim = torch.jit.script(ConvDim())
self.run_pass("inline", conv_dim.graph)
self.run_pass("peephole", conv_dim.graph)
FileCheck().check_not("conv").check_not("dim").run(conv_dim.graph)
class ConvDimMutate(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv = mod(3, 32, kernel_size=3, stride=2, bias=False)
def forward(self, x):
x = self.conv(x)
x.resize_([4, 4])
return x.dim()
conv_dim = torch.jit.script(ConvDimMutate())
self.run_pass("inline", conv_dim.graph)
self.run_pass("peephole", conv_dim.graph)
FileCheck().check("conv").check("dim").run(conv_dim.graph)
def test_normalized_rsub(self):
a = torch.tensor([1, 2, 3])
b = torch.tensor([4, 5, 6])
def convertible_rsub(x, y):
return (x - y), torch.rsub(y, x)
self.checkScript(convertible_rsub, (a, b))
op_graph = torch.jit.script(convertible_rsub).graph
FileCheck().check_count("aten::sub", 2, exactly=True).run(op_graph)
FileCheck().check_count("aten::rsub", 0, exactly=True).run(op_graph)
def test_normalized_is_op(self):
def convertible_is_op(x: bool, y: bool):
return x is True, False is x, x is y
self.checkScript(convertible_is_op, (True, False))
op_graph = torch.jit.script(convertible_is_op).graph
FileCheck().check_count("aten::eq", 3, exactly=True).run(op_graph)
FileCheck().check_count("aten::__is__", 0, exactly=True).run(op_graph)
def test_normalized_isnot_op(self):
def convertible_isnot_op(x: bool, y: bool):
return x is not True, False is not x, x is not y
self.checkScript(convertible_isnot_op, (True, False))
op_graph = torch.jit.script(convertible_isnot_op).graph
FileCheck().check_count("aten::ne", 3, exactly=True).run(op_graph)
FileCheck().check_count("aten::__isnot__", 0, exactly=True).run(op_graph)
def test_peephole_list_len(self):
def run_peephole_and_check_const_value(graph, const_string):
torch._C._jit_pass_peephole_list_idioms(graph, refine_list_len=True)
self.run_pass("constant_propagation", graph)
FileCheck().check(const_string).check_next("return").run(graph)
def gen_li(inp_len: int):
return [0 for i in range(inp_len)]
@torch.jit.script
def foo(x: List[int], y: List[int]):
if len(x) != 4 or len(y) != 5:
raise Exception("") # noqa: TRY002
return len(x) + len(y)
run_peephole_and_check_const_value(foo.graph, "value=9")
self.assertEqual(foo(gen_li(4), gen_li(5)), 9)
with self.assertRaises(Exception):
foo(2, 4)
@torch.jit.script
def foo(x: List[int], y: List[int]):
if len(x) == 4 and len(y) == 5:
pass
else:
raise Exception("hi") # noqa: TRY002
return len(x) + len(y)
run_peephole_and_check_const_value(foo.graph, "value=9")
self.assertEqual(foo(gen_li(4), gen_li(5)), 9)
with self.assertRaises(Exception):
foo(2, 4)
@torch.jit.script
def foo(x: List[int], y: List[int], z: List[int]):
if len(x) != 4:
raise Exception("..") # noqa: TRY002
else:
if len(y) != 8:
raise Exception("...") # noqa: TRY002
else:
if len(z) == 3:
pass
else:
raise Exception("...") # noqa: TRY002
return len(x) + len(y) * len(z)
run_peephole_and_check_const_value(foo.graph, "value=28")
self.assertEqual(foo(gen_li(4), gen_li(8), gen_li(3)), 28)
with self.assertRaises(Exception):
foo(1, 2, 3)
# refinement should persist in second len(x) call
@torch.jit.script
def foo(x: List[int], cond: bool):
if len(x) == 4:
if cond:
return len(x)
return 4
return 4
run_peephole_and_check_const_value(foo.graph, "value=4")
def test_const_tuple_output(graph, const_inputs):
tup = graph.findNode("prim::TupleConstruct")
for i, elem in enumerate(tup.inputs()):
if i in const_inputs:
self.assertIsNotNone(elem.toIValue())
else:
self.assertIsNone(elem.toIValue())
# testing combinations of x1 : {True, False} x
# {then/else branch} x assert {True/False}
@torch.jit.script
def foo(x: List[int], b: List[int]):
if len(x) == 5:
x1 = True
else:
x1 = len(b) != 4
assert x1 == False # noqa: E712 TODO: canonicalize x is False to aten::eq
return len(x), len(b)
torch._C._jit_pass_peephole_list_idioms(foo.graph, refine_list_len=True)
torch._C._jit_pass_constant_propagation(foo.graph)
# we can only infer len(b) == 4 here
test_const_tuple_output(foo.graph, [1])
@torch.jit.script
def foo(x: List[int], b: List[int]):
if len(x) == 5:
x1 = False
else:
x1 = len(b) != 4
assert x1 == False # noqa: E712 TODO: canonicalize x is False to aten::eq
return len(x), len(b)
torch._C._jit_pass_peephole_list_idioms(foo.graph, refine_list_len=True)
torch._C._jit_pass_constant_propagation(foo.graph)
# cant infer anything
test_const_tuple_output(foo.graph, [])
@torch.jit.script
def foo(x: List[int], b: List[int]):
if len(x) == 5:
x1 = True
else:
x1 = len(b) == 4
assert x1 == False # noqa: E712 TODO: canonicalize x is False to aten::eq
return len(x), len(b)
torch._C._jit_pass_peephole_list_idioms(foo.graph, refine_list_len=True)
torch._C._jit_pass_constant_propagation(foo.graph)
# we cant infer anything, only len(b) != 4
test_const_tuple_output(foo.graph, [])
@torch.jit.script
def foo(x: List[int], b: List[int]):
if len(x) == 5:
x1 = True
else:
x1 = len(b) != 4
assert x1 == False # noqa: E712 TODO: canonicalize x is False to aten::eq
return len(x), len(b)
torch._C._jit_pass_peephole_list_idioms(foo.graph, refine_list_len=True)
torch._C._jit_pass_constant_propagation(foo.graph)
# can infer len(b) == 4
test_const_tuple_output(foo.graph, [1])
# swap branches
@torch.jit.script
def foo(x: List[int], b: List[int]):
if len(x) != 5:
x1 = len(b) != 4
else:
x1 = True
assert x1 == False # noqa: E712 TODO: canonicalize x is False to aten::eq
return len(x), len(b)
torch._C._jit_pass_peephole_list_idioms(foo.graph, refine_list_len=True)
torch._C._jit_pass_constant_propagation(foo.graph)
# can infer len(b) == 4
test_const_tuple_output(foo.graph, [1])
# use __not__
@torch.jit.script
def foo(x: List[int], b: List[int]):
if len(x) != 5:
x1 = len(b) != 4
else:
x1 = True
assert not x1
return len(x), len(b)
torch._C._jit_pass_peephole_list_idioms(foo.graph, refine_list_len=True)
torch._C._jit_pass_constant_propagation(foo.graph)
# can infer len(b) == 4
test_const_tuple_output(foo.graph, [1])
# Test unsuccessful optimizations
@torch.jit.script
def foo(x: List[int]):
assert len(x) == 4
x.append(3)
return len(x)
torch._C._jit_pass_peephole_list_idioms(foo.graph, refine_list_len=True)
self.run_pass("constant_propagation", foo.graph)
FileCheck().check_count("aten::len", 2).run(foo.graph)
@torch.jit.script
def foo(x: List[int], y: List[int]):
assert len(x) == 4 or len(y) == 5
return len(x) + len(y)
torch._C._jit_pass_peephole_list_idioms(foo.graph, refine_list_len=True)
self.run_pass("constant_propagation", foo.graph)
FileCheck().check_count("aten::len", 4).run(foo.graph)
def test_integer_refinement(self):
def run_peephole_and_check_const_value(graph, const_string):
self.run_pass("refine_integer_values", graph)
self.run_pass("constant_propagation", graph)
self.run_pass("dce", graph)
FileCheck().check(const_string).check_next("return").run(graph)
@torch.jit.script
def foo(x: int, y: int):
if x != 4 or y != 5:
raise Exception("") # noqa: TRY002
return x + y
graph = foo.graph
self.run_pass("refine_integer_values", graph)
self.run_pass("constant_propagation", graph)
self.run_pass("dce", graph)
run_peephole_and_check_const_value(foo.graph, "value=9")
self.assertEqual(foo(4, 5), 9)
with self.assertRaises(Exception):
foo(2, 4)
@torch.jit.script
def foo(x: int, y: int):
if x == 4 and y == 5:
pass
else:
raise Exception("hi") # noqa: TRY002
return x + y
run_peephole_and_check_const_value(foo.graph, "value=9")
self.assertEqual(foo(4, 5), 9)
with self.assertRaises(Exception):
foo(2, 4)
@torch.jit.script
def foo(x: int, y: int, z: int):
if x != 4:
raise Exception("..") # noqa: TRY002
else:
if y != 8:
raise Exception("...") # noqa: TRY002
else:
if z == 3:
pass
else:
raise Exception("...") # noqa: TRY002
return x + y * z
run_peephole_and_check_const_value(foo.graph, "value=28")
self.assertEqual(foo(4, 8, 3), 28)
with self.assertRaises(Exception):
foo(1, 2, 3)
# refinement should persist in second len(x) call
@torch.jit.script
def foo(x: int, cond: bool):
if x == 4:
if cond:
return x
return 4
return 4
run_peephole_and_check_const_value(foo.graph, "value=4")
@torch.jit.script
def foo(x: int, y: int):
assert x == 4 or y == 5
return x + y
torch._C._jit_pass_peephole_list_idioms(foo.graph, refine_list_len=True)
self.run_pass("constant_propagation", foo.graph)
FileCheck().check("aten::add").run(foo.graph)
def test_optimize_out_comparison_same_value(self):
def foo(x: int):
return x == x, x != x
def foo2(x: List[int]):
return x == x, x != x
for func, inp in zip([foo, foo2], [1, [2, 3]]):
func_s = torch.jit.script(func)
self.run_pass("peephole", func_s.graph)
FileCheck().check_not("aten::eq").check_not("aten::neq").run(func_s.graph)
self.assertEqual(func(inp), func_s(inp))
def test_peephole_add_zero(self):
@torch.jit.script
def foo(x: int):
return x + 0, 0 + x
self.run_pass("peephole", foo.graph)
FileCheck().check_not("aten::add")
self.assertEqual(foo(3), (3, 3))
def test_noop_peephole(self):
# test unsuccessful
def foo1(x):
return x + 0
def foo2():
x = torch.zeros([2, 2])
x.sub_(3)
return x + 0
def foo3():
x = torch.zeros([2, 2])
return x, x + 0
def foo4():
x = torch.zeros([2, 2])
return x + 0.0
funcs = foo1, foo2, foo3, foo4
inps = (torch.ones([2]),), (), (), ()
for func, inp in zip(funcs, inps):
foo_s = torch.jit.script(func)
self.run_pass("peephole", foo_s.graph)
FileCheck().check_count("aten::add", 1, exactly=True).run(foo_s.graph)
self.assertEqual(func(*inp), foo_s(*inp))
# successful
def func(x):
return (x + 0) * 1 - 5
func_s = torch.jit.script(func)
self.run_pass("peephole", func_s.graph)
# bail on modified value first
FileCheck().check_not("aten::add").check("aten::mul").run(func_s.graph)
# second run it should succeed
self.run_pass("peephole", func_s.graph)
FileCheck().check_not("aten::add").check_not("aten::mul").run(func_s.graph)
self.assertEqual(func(torch.ones([2, 2])), func_s(torch.ones([2, 2])))
def func(x):
return (x + 0.0) - 5
func_s = torch.jit.script(func)
inp = next(func_s.graph.inputs())
inp.setType(torch._C.TensorType.create_from_tensor(torch.rand([2, 2])))
torch._C._jit_pass_peephole(func_s.graph, disable_shape_peepholes=True)
FileCheck().check("aten::add").run(func_s.graph)
torch._C._jit_pass_peephole(func_s.graph, disable_shape_peepholes=False)
FileCheck().check_not("aten::add").run(func_s.graph)
def test_refine_integer_values(self):
@torch.jit.script
def foo(x: int):
y = 1
if x == 1:
return y
else:
return x
self.run_pass("refine_integer_values", foo.graph)
self.run_pass("constant_propagation", foo.graph)
self.run_pass("dce", foo.graph)
FileCheck().check("graph").check_next("return").run(foo.graph)
self.assertEqual(foo(2), 2)
self.assertEqual(foo(1), 1)
def test_peephole_len_list(self):
@torch.jit.script
def foo(x):
return len(x.size())
self.run_pass("peephole", foo.graph)
FileCheck().check("aten::len").run(foo.graph)
inputs = list(foo.graph.inputs())
inputs[0].setType(inputs[0].type().with_sizes([None, None]))
self.run_pass("peephole", foo.graph)
FileCheck().check_not("aten::len").run(foo.graph)
self.assertEqual(2, foo(torch.rand([3, 1])))
@torch.jit.script
def foo(x):
li = x.size()
li.append(4)
return len(li)
inputs = list(foo.graph.inputs())
inputs[0].setType(inputs[0].type().with_sizes([None, None]))
self.run_pass("peephole", foo.graph)
FileCheck().check("aten::len").run(foo.graph)
self.assertEqual(3, foo(torch.rand([3, 1])))
def test_peephole_optional_refine(self):
@torch.jit.script
def foo(z: int, z2: int, cond: bool):
if cond:
return z
else:
return z2
out = next(foo.graph.findNode("prim::If").outputs())
out.setType(torch._C.OptionalType(torch._C.IntType.get()))
self.run_pass("peephole", foo.graph)
FileCheck().check_not("int?").run(foo.graph)
def test_peephole_int(self):
@torch.jit.script
def foo(x):
# type: (number)
return int(x)
FileCheck().check("aten::Int").run(foo.graph)
next(foo.graph.inputs()).setType(torch._C.IntType.get())
self.run_pass("peephole", foo.graph)
FileCheck().check_not("aten::Int").run(foo.graph)
def test_peephole_arith(self):
@torch.jit.script
def foo(input0: int, input1: int, input2: int, input3: int):
_1 = torch.add(input1, 2)
_3 = torch.add(input3, 2)
_5 = torch.add(1, torch.sub(_1, 3) // 1)
_6 = torch.add(1 * torch.sub(_3, 3) // 1, 1) / 1
return [_5, int(_6)]
FileCheck().check("aten::add").check("aten::sub").check("aten::mul").check(
"aten::floordiv"
).check("aten::div").run(foo.graph)
self.run_pass("peephole", foo.graph)
FileCheck().check("graph").check("):").check_next("ListConstruct").check_next(
"return"
).run(foo.graph)
self.assertEqual(foo(0, 1, 2, 3), [1, 3])
def test_peephole_dict_getitem_simple(self):
@torch.jit.script
def foo(a: int, b: int):
d = {0: a, 1: b}
x = d[1]
y = d[0]
return x, y
self.run_pass("peephole", foo.graph)
FileCheck().check_not("DictConstruct").check_not("__getitem__").run(foo.graph)
self.assertEqual(foo(0, 1), (1, 0))
@torch.jit.script
def foo(a: int, b: int):
d = {"0": a, "1": b}
x = d["1"]
y = d["0"]
return x, y
self.run_pass("peephole", foo.graph)
FileCheck().check_not("DictConstruct").check_not("__getitem__").run(foo.graph)
self.assertEqual(foo(0, 1), (1, 0))
@torch.jit.script
def foo(a: int, b: int):
d = {0.0: a, 1.0: b}
x = d[1.0]
y = d[0.0]
return x, y
self.run_pass("peephole", foo.graph)
FileCheck().check_not("DictConstruct").check_not("__getitem__").run(foo.graph)
self.assertEqual(foo(0, 1), (1, 0))
def test_peephole_dict_getitem_no_optimization_missing_key(self):
@torch.jit.script
def foo():
d = {0: 1}
return d[2]
self.run_pass("peephole", foo.graph)
FileCheck().check("DictConstruct").check("__getitem__").run(foo.graph)
def test_peephole_dict_getitem_no_optimization_get_input_arg(self):
# Here we don't know if the input arg is in the dict, so we can't
# make the optimization.
@torch.jit.script
def foo(a: int):
d = {0: 1}
return d[a]
self.run_pass("peephole", foo.graph)
FileCheck().check("DictConstruct").check("__getitem__").run(foo.graph)
self.assertEqual(foo(0), 1)
def test_peephole_dict_getitem_no_optimization_dict_modified(self):
@torch.jit.script
def foo():
d = {0: 1}
d[0] = 2
return d[0]
self.run_pass("peephole", foo.graph)
FileCheck().check("DictConstruct").check("__getitem__").run(foo.graph)
self.assertEqual(foo(), 2)
def test_peephole_dict_getitem_no_optimization_overlapping_keys(self):
@torch.jit.script
def foo():
d = {0: 1, 0: 2} # noqa: F601
return d[0]
self.run_pass("peephole", foo.graph)
FileCheck().check("DictConstruct").check("__getitem__").run(foo.graph)
def test_peephole_dict_getitem_no_optimization_keys_might_overlap(self):
@torch.jit.script
def foo(x: int):
d = {0: 1, x: 2}
return d[x]
self.run_pass("peephole", foo.graph)
FileCheck().check("DictConstruct").check("__getitem__").run(foo.graph)
def test_peephole_dict_getitem_no_optimization_unsupported_type(self):
@torch.jit.script
def foo():
a = torch.rand((2, 2))
d = {a: 1}
return d[a]
self.run_pass("peephole", foo.graph)
FileCheck().check("DictConstruct").check("__getitem__").run(foo.graph)
self.assertEqual(foo(), 1)
def test_peephole_dict_len(self):
@torch.jit.script
def foo():
d = {0: 1, 1: 2}
return len(d)
self.run_pass("peephole", foo.graph)
FileCheck().check_not("DictConstruct").check_not("len").run(foo.graph)
self.assertEqual(foo(), 2)
def test_peephole_dict_len_no_optimization_overlapping_keys(self):
@torch.jit.script
def foo():
d = {0: 1, 0: 2} # noqa: F601
return len(d)
self.run_pass("peephole", foo.graph)
FileCheck().check("DictConstruct").check("len").run(foo.graph)
self.assertEqual(foo(), 1)
def test_peephole_dict_len_no_optimization_keys_might_overlap(self):
@torch.jit.script
def foo(x: int):
d = {0: 1, x: 2}
return len(d)
self.run_pass("peephole", foo.graph)
FileCheck().check("DictConstruct").check("len").run(foo.graph)
def test_peephole_dict_len_no_optimization_unsupported_type(self):
@torch.jit.script
def foo():
a = torch.rand((2, 2))
d = {a: 1}
return len(d)
self.run_pass("peephole", foo.graph)
FileCheck().check("DictConstruct").check("len").run(foo.graph)
self.assertEqual(foo(), 1)
def test_peephole_slice_all_three_args(self):
def foo(x: int):
return [1, 2, x, 4, 5, 6, 7][-5:6:2]
graph = torch.jit.script(foo).graph
self.run_pass("peephole", graph)
FileCheck().check_not("aten::slice").run(graph)
self.checkScript(foo, (3,))
def test_peephole_slice_one_empty_arg(self):
def check_helper(fn: Callable[[int], None]) -> None:
graph = torch.jit.script(fn).graph
self.run_pass("peephole", graph)
FileCheck().check_not("aten::slice").run(graph)
self.checkScript(fn, (3,))
def foo(x: int):
return [1, 2, x, 4, 5, 6, 7][1::2]
check_helper(foo)
def foo(x: int):
return [1, 2, x, 4, 5, 6, 7][:5:3]
check_helper(foo)
def foo(x: int):
return [1, 2, x, 4, 5, 6, 7][0:4]
check_helper(foo)
def test_peephole_slice_two_empty_args(self):
def check_helper(fn: Callable[[int], None]) -> None:
graph = torch.jit.script(fn).graph
self.run_pass("peephole", graph)
FileCheck().check_not("aten::slice").run(graph)
self.checkScript(fn, (3,))
def foo(x: int):
return [1, 2, x, 4, 5, 6, 7][::2]
check_helper(foo)
def foo(x: int):
return [1, 2, x, 4, 5, 6, 7][:5]
check_helper(foo)
def foo(x: int):
return [1, 2, x, 4, 5, 6, 7][1:]
check_helper(foo)
def test_peephole_slice_optimization_not_applied_list_modified(self):
@torch.jit.script
def foo():
li = [1, 2, 3, 4, 5, 6, 7]
li[0] = 0
return li[2:5]
self.run_pass("peephole", foo.graph)
FileCheck().check("aten::slice").run(foo.graph)
def test_peephole_slice_optimization_not_applied_non_const_args(self):
@torch.jit.script
def foo(x: int, y: int):
li = [1, 2, 3, 4, 5, 6, 7]
return li[x:y]
self.run_pass("peephole", foo.graph)
FileCheck().check("aten::slice").run(foo.graph)