forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_parametrization.py
71 lines (54 loc) · 2.42 KB
/
test_parametrization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# Owner(s): ["oncall: jit"]
import torch
import torch.nn.utils.parametrize as parametrize
from torch import nn
from torch.testing._internal.jit_utils import JitTestCase
if __name__ == "__main__":
raise RuntimeError(
"This test file is not meant to be run directly, use:\n\n"
"\tpython test/test_jit.py TESTNAME\n\n"
"instead."
)
class TestParametrization(JitTestCase):
# Define some parametrization
class Symmetric(nn.Module):
def forward(self, X):
return X.triu() + X.triu(1).mT
def test_traceable(self):
r"""Test the jit scripting and tracing of a parametrized model."""
model = nn.Linear(5, 5)
parametrize.register_parametrization(model, "weight", self.Symmetric())
x = torch.randn(3, 5)
y = model(x)
# Check the tracing works. Because traced functions cannot be called
# directly, we run the comparison on the activations.
traced_model = torch.jit.trace_module(model, {"forward": x})
y_hat = traced_model(x)
self.assertEqual(y, y_hat)
# Check traced model works with caching
with parametrize.cached():
y_hat = traced_model(x)
self.assertEqual(y, y_hat)
# Check the tracing throws an error when caching
with self.assertRaisesRegex(RuntimeError, "Cannot trace a model while caching"):
with parametrize.cached():
traced_model = torch.jit.trace_module(model, {"forward": x})
def test_scriptable(self):
# TODO: Need to fix the scripting in parametrizations
# Currently, all the tests below will throw torch.jit.Error
model = nn.Linear(5, 5)
parametrize.register_parametrization(model, "weight", self.Symmetric())
x = torch.randn(3, 5)
y = model(x)
with self.assertRaises(torch.jit.Error):
# Check scripting works
scripted_model = torch.jit.script(model)
y_hat = scripted_model(x)
self.assertEqual(y, y_hat)
with parametrize.cached():
# Check scripted model works when caching
y_hat = scripted_model(x)
self.assertEqual(y, y_hat)
# Check the scripting process throws an error when caching
with self.assertRaisesRegex(RuntimeError, "Caching is not implemented"):
scripted_model = torch.jit.trace_module(model)