forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_device_analysis.py
337 lines (267 loc) · 11.3 KB
/
test_device_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
# Owner(s): ["oncall: jit"]
import unittest
from itertools import product
import torch
from torch.jit._passes._property_propagation import apply_input_props_using_example
from torch.testing._internal.common_utils import TEST_CUDA
from torch.testing._internal.jit_utils import JitTestCase
try:
from torchvision import models
except ImportError:
models = None
if __name__ == "__main__":
raise RuntimeError(
"This test file is not meant to be run directly, use:\n\n"
"\tpython test/test_jit.py TESTNAME\n\n"
"instead."
)
class TestDeviceAnalysis(JitTestCase):
@classmethod
def setUpClass(cls):
cls.cpu = torch.device("cpu")
cls.cuda = torch.device("cuda")
cls.vulkan = torch.device("vulkan")
cls.mkldnn = torch.device(
"mkldnn"
) # MKLDNN can't mix with other device types at all
cls.device_types = [cls.cpu, cls.cuda, cls.vulkan]
@staticmethod
def node_output_device(graph):
graph_out = list(graph.outputs())
assert len(graph_out) == 1
return graph_out[0].type().device()
def prop_device_on_graph(self, graph, example_devices, in_shapes=None):
graph_inputs = list(graph.inputs())
torch._C._jit_pass_erase_shape_information(graph)
self.assertEqual(len(graph_inputs), len(example_devices))
for graph_i, device_i in zip(graph_inputs, example_devices):
if device_i is not None:
graph_i.setType(graph_i.type().with_device(device_i))
if in_shapes:
for graph_i, shapes_i in zip(graph_inputs, in_shapes):
if shapes_i is not None:
graph_i.setType(graph_i.type().with_sizes(shapes_i))
torch._C._jit_pass_propagate_shapes_on_graph(graph)
torch._C._jit_pass_propagate_device(graph)
def assert_device_equal(
self, fn, in_devices, expected_device, in_shapes=None, subtest_str=""
):
with self.subTest(
f"In device: {in_devices}, expected: {expected_device}, \n {subtest_str}"
):
graph = torch.jit.script(fn).graph
self.prop_device_on_graph(graph, in_devices, in_shapes)
actual_device = self.node_output_device(graph)
if expected_device is None or actual_device is None:
self.assertEqual(actual_device, expected_device)
else:
self.assertEqual(
actual_device.type, expected_device.type, "Failed Verification"
)
def test_device_apply(self):
# Test if the device is properly applied to the input
def add_self(x):
return x + x
graph = torch.jit.script(add_self).graph
graph_input = next(graph.inputs())
graph_input.setType(graph_input.type().with_device(self.cpu))
# self.prop_device_on_graph(graph, [self.cpu])
self.assertEqual(graph_input.type().device(), self.cpu)
@unittest.skipIf(models is None, "Requires torchvision")
def test_mobilenet(self):
in_cpu = torch.randn(1, 3, 224, 224, device=self.cpu)
in_example = in_cpu
expected_device = self.cpu
m = torch.jit.script(models.mobilenet_v3_small())
m.eval()
graph = torch.jit.freeze(m).graph
# torch._C._jit_pass_erase_shape_information(graph)
apply_input_props_using_example(graph, in_example)
torch._C._jit_pass_propagate_shapes_on_graph(graph)
torch._C._jit_pass_propagate_device(graph)
actual_device = self.node_output_device(graph)
if expected_device is None or actual_device is None:
self.assertEqual(actual_device, expected_device)
else:
self.assertEqual(
actual_device.type, expected_device.type, "Failed Verification"
)
def test_simple(self):
def add_self(x):
return x + x
def relu_(x):
return torch.nn.functional.relu_(x)
functions = [add_self, relu_]
for in_device, fn in product(self.device_types, functions):
self.assert_device_equal(fn, [in_device], in_device)
def test_set_dtype(self):
def set_device(x):
return x.to("cpu")
for in_device in self.device_types:
self.assert_device_equal(set_device, [in_device], self.cpu)
def test_device_arg(self):
# Test that no device gets propagated when arg is passed in
def set_device(x, device_name: torch.device):
return x.to(device=device_name)
for in_device in self.device_types:
self.assert_device_equal(set_device, [in_device, None], None)
def test_tensor_as_fns(self):
def view_as_fn(x, y):
return x.view_as(y)
def expand_as_fn(x, y):
return x.expand_as(y)
def reshape_as_fn(x, y):
return x.reshape_as(y)
for test_fn in [view_as_fn, expand_as_fn, reshape_as_fn]:
self.assert_device_equal(test_fn, [self.cpu, self.cpu], self.cpu)
self.assert_device_equal(test_fn, [self.cuda, None], self.cuda)
self.assert_device_equal(test_fn, [None, self.mkldnn], None)
def type_as_fn(x, y):
return x.type_as(y)
self.assert_device_equal(type_as_fn, [self.cpu, self.cpu], self.cpu)
self.assert_device_equal(type_as_fn, [self.cuda, None], None)
self.assert_device_equal(type_as_fn, [None, self.mkldnn], self.mkldnn)
def zerodim_test_core(self, device_pairs):
# Test the support of zerodim tensors with non-zerodim tensors
def mul(x, y):
return x * y
def add(x, y):
return x + y
fns = [mul, add]
input_shapes = [
((1, 2, 2), (2, 2)), # Different dim, non-zerodim
((1, 2, 2), ()), # one zerodim
((), ()), # both zerodim
]
for fn, shapes, devices in product(fns, input_shapes, device_pairs):
subtest_str = f"{fn.__name__} \n shapes: {shapes}, \n devices: {devices}"
in0 = torch.rand(shapes[0], device=devices[0])
in1 = torch.rand(shapes[1], device=devices[1])
try:
out = fn(in0, in1)
except Exception as e:
# Don't expect eager failures for CPU zerodim tensors
for i in range(len(devices)):
if shapes[i] == () and devices[i] == self.cpu:
raise e
# only expect eager failures on different devices
if devices[0] == devices[1]:
raise e
# Expect result device to be None for the failure cases.
self.assert_device_equal(fn, devices, None, shapes, subtest_str)
continue
self.assert_device_equal(fn, devices, out.device, shapes, subtest_str)
# Test that without shapes, we either get the same device or None for the device
# Aka that the code is convservative for tensor shapes.
graph = torch.jit.script(fn).graph
self.prop_device_on_graph(graph, devices)
actual_device = self.node_output_device(graph)
self.assertTrue(
(actual_device is None) or (actual_device.type == out.device.type)
)
def test_zerodim_cpu(self):
# Allow for minimal testing locally
self.zerodim_test_core([(self.cpu, self.cpu)])
def test_zerodim_no_device(self):
# If device is missing, you should never be able to infer device type.
def mul(x, y):
return x * y
def add(x, y):
return x + y
fns = [mul, add]
device_pairs = [
(self.cpu, None),
(None, self.cpu),
(None, None),
]
input_shapes = [
((1, 2, 2), (2, 2)), # Different dim, non-zerodim
((1, 2, 2), ()), # one zerodim
((), ()), # both zerodim
]
for fn, shapes, devices in product(fns, input_shapes, device_pairs):
self.assert_device_equal(fn, devices, None, shapes)
@unittest.skipIf(not TEST_CUDA, "No CUDA")
def test_zerodim_gpu(self):
device_pairs = [
(self.cpu, self.cuda),
(self.cuda, self.cpu),
(self.cuda, self.cuda),
]
self.zerodim_test_core(device_pairs)
def test_custom_device_op(self):
# Test both of the custom functions and check that the devicetype is
# correctly applied
def set_cuda(x):
return x.cuda()
def set_cpu(x):
return x.cpu()
def set_mkldnn(x):
return x.to_mkldnn()
device_pairs = (
(set_cuda, self.cuda),
(set_cpu, self.cpu),
(set_mkldnn, self.mkldnn),
)
for fn, out_device in device_pairs:
for in_device in self.device_types:
self.assert_device_equal(fn, [in_device], out_device)
def test_device_if_propagation(self):
def test_fn(x, y, z: bool):
if z:
return x + 3
else:
return y * 2
self.assert_device_equal(test_fn, [self.cpu, self.cpu, None], self.cpu)
self.assert_device_equal(test_fn, [self.mkldnn, self.mkldnn, None], self.mkldnn)
self.assert_device_equal(test_fn, [self.cpu, self.cuda, None], None)
def test_loop_simple(self):
def test_fn(x, y, z: int):
for _ in range(z):
y = x
return y
self.assert_device_equal(test_fn, [self.cpu, self.cpu, None], self.cpu)
self.assert_device_equal(test_fn, [self.cpu, self.cuda, None], None)
self.assert_device_equal(test_fn, [self.cpu, None, None], None)
def test_loop_device_change(self):
def test_fn(x, z: int):
for _ in range(z):
x = x.cuda()
return x
self.assert_device_equal(test_fn, [self.cpu, None], None)
self.assert_device_equal(test_fn, [self.cuda, None], self.cuda)
self.assert_device_equal(test_fn, [None, None], None)
def test_while_change(self):
def test_fn(x, z: int):
while z > 0:
x = x.cuda()
z = 0
return x
self.assert_device_equal(test_fn, [self.cpu, None], None)
self.assert_device_equal(test_fn, [self.cuda, None], self.cuda)
self.assert_device_equal(test_fn, [None, None], None)
def test_nested_loops(self):
def test_fn(x, z: int):
for i in range(z):
x = x.cpu()
for _ in range(i):
x = x + 1
return x
self.assert_device_equal(test_fn, [self.cpu, None], self.cpu)
self.assert_device_equal(test_fn, [self.cuda, None], None)
self.assert_device_equal(test_fn, [None, None], None)
def test_if_loop_mix(self):
def test_fn(x, y, z: bool, a: bool):
c = x
while a:
if z:
c = x + 3
else:
c = y * 2
a = False
return c
self.assert_device_equal(test_fn, [self.cpu, self.cpu, None, None], self.cpu)
self.assert_device_equal(
test_fn, [self.mkldnn, self.mkldnn, None, None], self.mkldnn
)
self.assert_device_equal(test_fn, [self.cpu, self.cuda, None, None], None)