forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_complexity.py
107 lines (88 loc) · 3.43 KB
/
test_complexity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
# Owner(s): ["oncall: jit"]
import contextlib
import os
import sys
import unittest
import torch
# Make the helper files in test/ importable
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(pytorch_test_dir)
from torch.testing._internal.common_utils import (
IS_FBCODE,
run_tests,
set_default_dtype,
suppress_warnings,
)
from torch.testing._internal.jit_metaprogramming_utils import (
get_all_nn_module_tests,
get_nn_functional_compiled_fn_and_inputs,
get_nn_mod_test_name,
nn_functional_tests,
try_get_nn_module_compiled_mod_and_inputs,
)
from torch.testing._internal.jit_utils import enable_profiling_mode, JitTestCase
def num_ifs_loops(graph):
graph_str = str(graph)
# only look at body of graph
graph_body = graph_str[0 : graph_str.find("return")]
return graph_body.count("prim::Loop") + graph_body.count("prim::If")
def num_non_tensor_nodes(block):
num_non_tensor = 0
for node in block.nodes():
kind = node.kind()
# GetAttr don't provide useful signal here, since they are non-optimizable except with freezing
# Constant is not executed, bailouts should be a separate tests, don't provide useful signal here
if kind == "prim::Constant" or "prim::Bailout" in kind or "GetAttr" in kind:
continue
for b in node.blocks():
num_non_tensor += num_non_tensor_nodes(b)
tensor_out = False
for out in node.outputs():
if "Tensor" in str(out.type()):
tensor_out = True
break
num_non_tensor += int(not tensor_out)
return num_non_tensor
class TestComplexity(JitTestCase):
def setUp(self):
super().setUp()
self.grad_enabled = torch.is_grad_enabled()
torch.set_grad_enabled(False)
self._stack = contextlib.ExitStack()
self._stack.enter_context(set_default_dtype(torch.double))
def tearDown(self):
self._stack.close()
torch.set_grad_enabled(self.grad_enabled)
super().tearDown()
@suppress_warnings
def test_generated_functional_tests(self):
with enable_profiling_mode():
stats = [("Name", "Ifs/Loops", "non-tensor ops")]
for test in nn_functional_tests:
test_name = test[0]
fn, inputs = get_nn_functional_compiled_fn_and_inputs(*test)
for _ in range(6):
fn(*inputs)
g = torch.jit.last_executed_optimized_graph()
stats.append((test_name, num_ifs_loops(g), num_non_tensor_nodes(g)))
for line in stats:
print(line)
@suppress_warnings
@unittest.skipIf(IS_FBCODE, "Causes a RecursionError in fbcode")
def test_nn_module_tests(self):
with enable_profiling_mode():
stats = [("Name", "Ifs/Loops", "non-tensor ops")]
for test in get_all_nn_module_tests():
out = try_get_nn_module_compiled_mod_and_inputs(**test)
if not out:
continue
mod, inputs = out
test_name = get_nn_mod_test_name(**test)
for _ in range(6):
mod(*inputs)
g = torch.jit.last_executed_optimized_graph()
stats.append((test_name, num_ifs_loops(g), num_non_tensor_nodes(g)))
for line in stats:
print(line)
if __name__ == "__main__":
run_tests()