forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_autodiff_subgraph_slicing.py
590 lines (513 loc) · 20.9 KB
/
test_autodiff_subgraph_slicing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
# Owner(s): ["oncall: jit"]
import os
import sys
import unittest
import torch
from torch.testing._internal.common_jit import check_against_reference
from torch.testing._internal.common_utils import (
enable_profiling_mode_for_profiling_tests,
GRAPH_EXECUTOR,
num_profiled_runs,
ProfilingMode,
)
# Make the helper files in test/ importable
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(pytorch_test_dir)
from typing import List, Optional, Tuple
from torch.testing import FileCheck
from torch.testing._internal.jit_utils import (
disable_autodiff_subgraph_inlining,
JitTestCase,
)
if __name__ == "__main__":
raise RuntimeError(
"This test file is not meant to be run directly, use:\n\n"
"\tpython test/test_jit.py TESTNAME\n\n"
"instead."
)
@unittest.skipIf(
GRAPH_EXECUTOR == ProfilingMode.SIMPLE, "Simple Executor doesn't support gradients"
)
class TestAutodiffSubgraphSlicing(JitTestCase):
# TODO: It is better if we can test directly on graphs instead of the current
# end-to-end fashion.
def _perform_ad_subgraph_slicing(self, fn, *input_sizes):
with disable_autodiff_subgraph_inlining():
with enable_profiling_mode_for_profiling_tests():
ge = torch.jit.script(fn)
inputs = [torch.randn(size, requires_grad=True) for size in input_sizes]
ge(*inputs, profile_and_replay=True)
return ge.graph_for(*inputs)
def assertGraphSize(self, graph, size):
nodes = list(
filter(
lambda n: (
n.kind() != "prim::BailOut"
and n.kind() != "prim::BailoutTemplate"
and n.kind() != "prim::TypeCheck"
and n.kind() != "prim::RequiresGradCheck"
),
graph.nodes(),
)
)
self.assertEqual(len(list(nodes)), size)
def test_chunk_constant_script_ad(self):
@torch.jit.script
def func(x):
x1, x2 = torch.chunk(x, 2)
return (x1, x2)
input = torch.rand(6, 10).requires_grad_()
with disable_autodiff_subgraph_inlining():
with enable_profiling_mode_for_profiling_tests():
output = func(input, profile_and_replay=True)
FileCheck().check_not("prim::DifferentiableGraph").run(
func.graph_for(input)
)
@unittest.skipIf(
GRAPH_EXECUTOR != ProfilingMode.PROFILING,
"This threshold is only valid for Profiling Executor",
)
def test_diff_graph_inline_threshold(self):
with enable_profiling_mode_for_profiling_tests():
NUM_RUNS = 1
with num_profiled_runs(NUM_RUNS):
@torch.jit.script
def foo(x):
# two nodes should be fused
# see https://github.com/pytorch/pytorch/blob/master/torch/csrc/jit/runtime/graph_executor_impl.h#L49
return torch.sigmoid(torch.sigmoid(x))
@torch.jit.script
def bar(x):
# two nodes should NOT be fused
return torch.sigmoid(x)
input = torch.rand([4, 4], requires_grad=True)
foo(input)
foo(input)
bar(input)
bar(input)
self.assertGraphContainsExactly(
foo.graph_for(input), "prim::DifferentiableGraph", 1
)
self.assertGraphContainsExactly(
bar.graph_for(input), "prim::DifferentiableGraph", 0
)
def test_bias_as_module_attr(self):
with enable_profiling_mode_for_profiling_tests():
class M(torch.nn.Module):
def __init__(self, has_bias):
super().__init__()
self.ll = torch.nn.Linear(10, 10, has_bias)
def forward(self, x, y):
return self.ll(x + y) * x + y
x = torch.rand(10, 10, requires_grad=True)
no_bias = M(False)
scripted_no_bias = torch.jit.script(no_bias)
scripted_no_bias(x, x)
scripted_no_bias(x, x)
scripted_no_bias(x, x)
has_bias = M(True)
check_against_reference(
self,
scripted_no_bias,
no_bias,
lambda x: x,
(
x,
x,
),
check_types=False,
)
scripted_has_bias = torch.jit.script(has_bias)
scripted_has_bias(x, x)
scripted_has_bias(x, x)
scripted_has_bias(x, x)
check_against_reference(
self,
scripted_has_bias,
has_bias,
lambda x: x,
(
x,
x,
),
check_types=False,
)
def test_constructed_bias(self):
with enable_profiling_mode_for_profiling_tests():
def method1(x, weight, b1, b2):
bias = b1 * b2
return torch.nn.functional.linear(x, weight, bias)
N = 10
x = torch.rand(N, N, requires_grad=True)
weight = torch.rand(N, N, requires_grad=True)
b1 = torch.rand(N, N, requires_grad=True)
b2 = torch.rand(N, N, requires_grad=True)
scripted = self.checkScript(method1, (x, weight, b1, b2))
# check_types requires last_graph on scripted to be set, so we just skip it
check_against_reference(
self,
scripted,
method1,
lambda x: x,
(x, weight, b1, b2),
check_types=False,
)
def test_bias_as_arg(self):
with enable_profiling_mode_for_profiling_tests():
def method1(x, weight, bias: Optional[torch.Tensor]):
return torch.nn.functional.linear(x, weight, bias).relu() + 2
N = 10
x = torch.rand(N, N, requires_grad=True)
weight = torch.rand(N, N, requires_grad=True)
bias = None
scripted = self.checkScript(method1, (x, weight, bias))
# check_types requires last_graph on scripted to be set, so we just skip it
check_against_reference(
self,
scripted,
method1,
lambda x: x,
(x, weight, bias),
check_types=False,
)
bias = torch.rand(N, N, requires_grad=True)
scripted = self.checkScript(method1, (x, weight, bias))
# check_types requires last_graph on scripted to be set, so we just skip it
check_against_reference(
self,
scripted,
method1,
lambda x: x,
(x, weight, bias),
check_types=False,
)
def test_requires_grad_for_tensor_list(self):
with enable_profiling_mode_for_profiling_tests():
# output & var_list[0] should have requires_grad set to True
def func(
input0: torch.Tensor, input1: torch.Tensor
) -> Tuple[torch.Tensor, List[torch.Tensor]]:
var_list = [input0, input1]
var = torch.cat(var_list)
output = var + 1.0
return output, var_list
jit_f = torch.jit.script(func)
input0 = torch.randn((2,), requires_grad=True)
input1 = torch.randn((2,))
output_ref = func(input0, input1)
for i in range(2):
output = jit_f(input0, input1)
assert output_ref[0].requires_grad == output[0].requires_grad
assert output_ref[1][0].requires_grad == output[1][0].requires_grad
assert output_ref[1][1].requires_grad == output[1][1].requires_grad
@unittest.skip(
"disable until we property handle tensor lists with undefined gradients"
)
def test_differentiable_graph_ops_requires_grad(self):
x = torch.randn(8, 2, dtype=torch.float).requires_grad_()
y = torch.randn(8, 2, dtype=torch.float)
def t(x: torch.Tensor, y: torch.Tensor, flag: bool):
o = x + 1.0
o1 = torch.relu(o)
o = y + 1.5
o2 = torch.relu(o)
o3 = o1 + o2
if flag:
o = o1 + 1.0
oo1 = torch.relu(o)
o = o2 + 2.5
oo2 = torch.relu(o)
oo3 = oo1 + oo2
else:
o = o1 * 1.0
oo1 = torch.relu(o)
o = o2 * 2.0
oo2 = torch.relu(o)
oo3 = oo1 + oo2
return o1, o2, o3, oo1, oo2, oo3
with enable_profiling_mode_for_profiling_tests():
t_jit = torch.jit.script(t)
jit_o = t_jit(x, y, False)
jit_o = t_jit(x, y, False)
o = t(x, y, False)
FileCheck().check("prim::DifferentiableGraph").run(
t_jit.graph_for(x, y, False)
)
# validate the differentiableGraphOps are marking proper requires_grad
for oo, jit_oo in zip(o, jit_o):
self.assertEqual(oo.requires_grad, jit_oo.requires_grad)
self.assertEqual(oo, jit_oo)
# one more runs to trigger fusion
jit_o = t_jit(x, y, False)
for oo, jit_oo in zip(o, jit_o):
self.assertEqual(oo.dtype, jit_oo.dtype)
self.assertEqual(oo.requires_grad, jit_oo.requires_grad)
self.assertEqual(oo, jit_oo)
@unittest.skipIf(
GRAPH_EXECUTOR == ProfilingMode.PROFILING,
"Simple Executor doesn't support gradients",
)
def test_prune_grad(self):
@torch.jit.script
def t(input, bias):
return torch.nn.functional.relu(input + bias)
input = torch.randn(2, 8, requires_grad=True)
bias = torch.randn(8, requires_grad=False) # bias does NOT require grad
NUM_PROFILED_RUNS = 1
with num_profiled_runs(NUM_PROFILED_RUNS):
WARMUP = 3 # 2 runs to reach backward + 1 to optimize it
for x in range(WARMUP):
o = t(input, bias)
o.sum().backward()
fwd_plan = list(t.get_debug_state().execution_plans.values())[0]
bwd_graph = list(
fwd_plan.code.grad_executor_states()[0].execution_plans.values()
)[0].graph
tup = next(bwd_graph.outputs())
self.assertEqual(len(list(tup.node().inputs())), 1)
def test_simple_merge(self):
# o --> o
def fn(x, y, z):
a = x * y
b = a * z
return b
graph = self._perform_ad_subgraph_slicing(fn, 1, 1, 1)
self.assertGraphSize(graph, 1)
self.assertGraphContainsExactly(graph, "prim::DifferentiableGraph", 1)
def test_simple_no_merge(self):
# o: autodiff supported. x: not autodiff supported.
# o --> x
def fn(x, y, z):
a = x * y
b = torch.zeros([abs(int(y))])
return a, b
graph = self._perform_ad_subgraph_slicing(fn, 1, 1, 1)
g_str = str(graph)
FileCheck().check("aten::Int").check("aten::zeros").check_not("aten::mul").run(
g_str[0 : g_str.find("return")]
)
self.assertGraphContainsExactly(graph, "prim::DifferentiableGraph", 1)
def test_does_not_merge_unrelated(self):
# o o
def fn(w, x, y, z):
a = x * y
b = w * z
return a, b
graph = self._perform_ad_subgraph_slicing(fn, 1, 1, 1, 1)
self.assertGraphSize(graph, 3)
self.assertGraphContainsExactly(graph, "prim::DifferentiableGraph", 2)
def test_merges_without_cycles(self):
# o --> o --> o
# | ^
# \_________/
def fn(w, x, y):
a = w * x
b = a * y
c = a * b
return c
graph = self._perform_ad_subgraph_slicing(fn, 1, 1, 1)
self.assertGraphSize(graph, 1)
self.assertGraphContainsExactly(graph, "prim::DifferentiableGraph", 1)
def test_merges_dense(self):
# o o
# |\ /|
# | \ / |
# | /\ |
# vv vv
# o o
def fn(x, y):
a, b = x.chunk(2)
c, d = y.chunk(2)
return a + c, b + d
graph = self._perform_ad_subgraph_slicing(fn, 2, 2)
self.assertGraphSize(graph, 2)
self.assertGraphContainsExactly(graph, "prim::DifferentiableGraph", 1)
def test_does_not_create_cycles(self):
# o --> x --> o
# | ^
# \_________/
def fn(w, x, y):
a = w * x
b = torch.zeros(abs(int(a)))
c = a * b
return c
graph = self._perform_ad_subgraph_slicing(fn, 1, 1, 1)
self.assertGraphContainsExactly(graph, "prim::DifferentiableGraph", 2)
def test_merges_up(self):
# o --> x o
# | ^
# \_________/
def fn(w, x, y, z):
a = w * x
b = torch.zeros(abs(int(y)))
c = a * z
return b, c
graph = self._perform_ad_subgraph_slicing(fn, 1, 1, 1, 1)
g_str = str(graph)
FileCheck().check_not("aten::add").run(g_str[0 : g_str.find("return")])
self.assertGraphContainsExactly(graph, "prim::DifferentiableGraph", 1)
def test_merges_down(self):
# o x --> o
# | ^
# \_________/
def fn(v, w, x, y):
a = v * w
b = torch.ones(int(y))
c = b * a
return a, c
graph = self._perform_ad_subgraph_slicing(fn, 1, 1, 1, 1)
num_nodes = 4 if GRAPH_EXECUTOR == ProfilingMode.PROFILING else 3
# add moved down
g_str = str(graph)
FileCheck().check_not("aten::add").run(g_str[0 : g_str.find("return")])
self.assertGraphContainsExactly(graph, "prim::DifferentiableGraph", 1)
def test_respects_lexical_scoping(self):
def fn(x, k):
y = x * 1.1
if bool(k):
k = k + y
z = y * k
return z, k
graph = self._perform_ad_subgraph_slicing(fn, 1, 1)
# We should not have combined the two multiplications into
# the same group; they should each be a separate DiffGraph
self.assertGraphContainsExactly(graph, "prim::DifferentiableGraph", 3)
def test_merge_respects_aliasing(self):
def fn(x, k, cond):
y = x * 1.1
y = y * k
y = y * 2.2
if bool(cond):
z1 = y[0]
z2 = y[1]
z1.add_(3)
out = z2 + k + 3.3
out = out * out
return out
graph = self._perform_ad_subgraph_slicing(fn, [2, 2], [2, 2], 1)
# z2 did did not get merged into the subgraph
FileCheck().check("prim::If").check("aten::select").check_next(
"aten::select"
).check_next("aten::add_").check("Differentiable").run(graph)
self.assertGraphContainsExactly(graph, "prim::DifferentiableGraph", 2)
def test_aliased_outputs(self):
with enable_profiling_mode_for_profiling_tests():
# Case 1: aliasing between relu and t
# is within a DifferentiableGraph. It should be valid
# to merge both split_with_sizes in relu in one graph
input_str = """
graph(%a : Tensor):
%b : Tensor = aten::relu(%a)
%2 : Tensor = aten::t(%b)
return (%2)
"""
graph = torch._C.parse_ir(input_str)
torch._C._jit_pass_create_autodiff_subgraphs(graph, 1)
FileCheck().check("with prim::DifferentiableGraph").check(
"aten::relu"
).check("aten::t").run(graph)
# Case 2: aliasing between relu and split_with_sizes
# are both outputs of a Diff graph. It should be invalid
# to merge both split_with_sizes in relu in one graph
# i.e. relu and split_with_sizes should be in different
# differentiable graphs
input_str = """
graph(%a : Tensor):
%b : Tensor = aten::relu(%a)
%0 : int[] = prim::Constant[value=[2, 2, 1]]()
%1 : int = prim::Constant[value=0]()
%2 : Tensor[] = aten::split_with_sizes(%b, %0, %1)
%3 : (Tensor[], Tensor[]) = prim::TupleConstruct(%b, %2)
return (%3)
"""
graph = torch._C.parse_ir(input_str)
torch._C._jit_pass_create_autodiff_subgraphs(graph, 1)
FileCheck().check("Tensor = prim::DifferentiableGraph").check(
"with prim::DifferentiableGraph"
).check("Tensor = aten::relu").check_not("aten::split_with_sizes").run(
graph
)
# Case 3: two aliased nodes in a graph.
# Both `split_with_sizes` should be unfused
input_str = """
graph(%a : Tensor):
%b : Tensor = aten::relu(%a)
%s1 : int[] = prim::Constant[value=[2, 2, 1]]()
%s2 : int[] = prim::Constant[value=[3, 1]]()
%1 : int = prim::Constant[value=0]()
%2 : Tensor[] = aten::split_with_sizes(%b, %s1, %1)
%3 : Tensor[] = aten::split_with_sizes(%b, %s2, %1)
%4 : (Tensor, Tensor[]) = prim::TupleConstruct(%b, %2, %3)
return (%4)
"""
graph = torch._C.parse_ir(input_str)
torch._C._jit_pass_create_autodiff_subgraphs(graph, 1)
FileCheck().check("Tensor = prim::DifferentiableGraph").check(
"with prim::DifferentiableGraph"
).check("Tensor = aten::relu").check_not("aten::split_with_sizes").run(
graph
)
# Case 4: the aliased output has a descendant
# Both should be unfused. Note, %3 comes before %2
# to test that we unfuse in the reverse topo order
input_str = """
graph(%a : Tensor):
%b : Tensor = aten::relu(%a)
%0 : int[] = prim::Constant[value=[2, 2, 1]]()
%1 : int = prim::Constant[value=0]()
%2 : Tensor = aten::t(%b)
%3 : Tensor = aten::relu(%2)
%4 : (Tensor, Tensor, Tensor[]) = prim::TupleConstruct(%b, %3, %2)
return (%4)
"""
graph = torch._C.parse_ir(input_str)
torch._C._jit_pass_create_autodiff_subgraphs(graph, 1)
FileCheck().check("Tensor = prim::DifferentiableGraph").check(
"with prim::DifferentiableGraph"
).check("Tensor = aten::relu").check_not("aten::t").run(graph)
# Case 5: multiple aliased groups
# Both should be unfused. Note, %3 comes before %2
# to test that we unfuse in the reverse topo order
input_str = """
graph(%a : Tensor):
%b : Tensor = aten::relu(%a)
%c : Tensor = aten::abs(%a)
%0 : int[] = prim::Constant[value=[2, 2, 1]]()
%1 : int = prim::Constant[value=0]()
%d : Tensor = aten::t(%c)
%2 : Tensor = aten::t(%b)
%3 : Tensor = aten::relu(%2)
%4 : (Tensor, Tensor, Tensor[]) = prim::TupleConstruct(%3, %2, %d, %b, %c, %b)
return (%4)
"""
graph = torch._C.parse_ir(input_str)
torch._C._jit_pass_create_autodiff_subgraphs(graph, 1)
FileCheck().check("Tensor = prim::DifferentiableGraph").check(
"with prim::DifferentiableGraph"
).check("Tensor = aten::relu").check_not("aten::t").run(graph)
def test_has_profiled_info_aliasing_outputs(self):
# The expectation is that CallFunction will prevent the final profile node from
# getting merged into the DifferentiableGraph, and that create_autodiff_subgraphs
# will instead add this to the type for %4.
ir = """
graph(%a : Tensor):
%1 : Tensor = prim::profile[profiled_type=Float(requires_grad=0)](%a)
%2 : Tensor = aten::relu(%1)
%3 : Tensor = prim::profile[profiled_type=Float(requires_grad=0)](%2)
%4 : Tensor = aten::relu(%3)
%5 : Tensor = prim::CallFunction(%4)
%6 : Tensor = prim::profile[profiled_type=Float(requires_grad=0)](%4)
return (%6)
"""
graph = torch._C.parse_ir(ir)
torch._C._jit_pass_create_autodiff_subgraphs(graph)
for n in graph.nodes():
if n.kind() == "prim::DifferentiableGraph":
diff_graph = n.g("Subgraph")
outputs = list(diff_graph.outputs())
self.assertEqual(1, len(outputs))
output = outputs[0]
self.assertEqual(False, output.requiresGrad())
FileCheck().check("= prim::DifferentiableGraph").check(
"with prim::DifferentiableGraph"
).check(" = aten::relu").check("requires_grad=0").check("aten::relu").run(graph)