forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_kernel_benchmark.py
464 lines (388 loc) · 15.7 KB
/
test_kernel_benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
# Owner(s): ["module: inductor"]
import contextlib
import os
import subprocess
import sys
from unittest.mock import patch
import torch
import torch._inductor.async_compile # noqa: F401 required to warm up AsyncCompile pools
from torch._dynamo.testing import rand_strided
from torch._inductor import config
from torch._inductor.codecache import PyCodeCache
from torch._inductor.test_case import run_tests, TestCase
from torch._inductor.utils import fresh_inductor_cache
from torch.testing import FileCheck
from torch.testing._internal.common_device_type import expectedFailureXPU
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_GPU
class TestKernelBenchmark(TestCase):
device_type = GPU_TYPE
@classmethod
def setUpClass(cls):
cls.exit_stack = contextlib.ExitStack()
cls.exit_stack.enter_context(patch.object(config, "benchmark_kernel", True))
@classmethod
def tearDownClass(cls):
cls.exit_stack.close()
def setUp(self):
super().setUp()
PyCodeCache.cache.clear()
def get_compiled_module(self):
compiled_module = None
for v in PyCodeCache.cache.values():
if hasattr(v, "benchmark_compiled_module"):
self.assertTrue(
compiled_module is None, "Found multiple compiled modules"
)
compiled_module = v
self.assertTrue(compiled_module is not None)
return compiled_module
def verify_compiled_kernels(self, GB_count=1):
compiled_module = self.get_compiled_module()
# now run the compiled module in subprocess and check its output
bench_out = subprocess.check_output(
f"{sys.executable} {compiled_module.__file__} -kc".split(),
stderr=subprocess.STDOUT,
).decode()
# make sure we have the bandwidth information in the output
FileCheck().check_count(
"GB/s",
GB_count,
exactly=1,
).run(bench_out)
def verify_remove_inductor_deps(self, compiled_module):
try:
out = subprocess.check_output(
f"{sys.executable} {compiled_module.__file__}".split(),
env={**os.environ.copy(), "TORCHINDUCTOR_DUMP_LAUNCH_PARAMS": "1"},
stderr=subprocess.STDOUT,
)
except subprocess.CalledProcessError as e:
print(
"Failed when runinng triton code with TORCHINDUCTOR_DUMP_LAUNCH_PARAMS=1",
e,
)
print(e.output.decode())
raise e
from torch.utils._get_clean_triton import get_clean_triton
cleaned_triton = get_clean_triton(
compiled_module.__file__, f"{compiled_module.__file__}.cleaned"
)
self.assertTrue("@triton_heuristics" not in cleaned_triton)
try:
out = subprocess.check_output(
f"{sys.executable} {compiled_module.__file__}.cleaned".split(),
stderr=subprocess.STDOUT,
)
except subprocess.CalledProcessError as e:
print("Failed when when running cleaned triton", e)
print(e.output.decode())
print(cleaned_triton)
raise e
return cleaned_triton
def check_bandwidth(self, compiled_module, num_gb):
# now run the compiled module in subprocess and check its output
bench_out = subprocess.check_output(
f"{sys.executable} {compiled_module.__file__} -k".split(),
stderr=subprocess.STDOUT,
).decode()
# make sure we have the bandwidth information in the output
FileCheck().check_count(
f"{num_gb} GB ",
1,
exactly=1,
).run(bench_out)
def test_pw_kernel_benchmark(self):
@torch.compile
def f(x):
return torch.sin(x) + torch.cos(x)
inp = torch.rand(2, 3).to(device=GPU_TYPE)
out = f(inp)
self.verify_compiled_kernels()
@config.patch(max_autotune=True, max_autotune_gemm_backends="TRITON")
@fresh_inductor_cache()
def test_matmul_triton_kernel_benchmark(self):
M = 12544
N = 256
K = 64
a = torch.rand(M, K, dtype=torch.float16, device=GPU_TYPE)
b = torch.rand(N, K, dtype=torch.float16, device=GPU_TYPE).t()
@torch.compile
def f(a, b):
return torch.relu(a @ b)
f(a, b)
self.verify_compiled_kernels()
@expectedFailureXPU
@config.patch(max_autotune=True, max_autotune_gemm_backends="TRITON")
@fresh_inductor_cache()
def test_mm_triton_kernel_benchmark(self):
M = 2048
N = 2432
K = 1949
K_2 = 3581
a = rand_strided((M, K_2), (K_2, 1), device="cuda", dtype=torch.float16)
b = rand_strided((K, N), (1, K), device="cuda", dtype=torch.float16)
@torch.compile
def f(a, b):
a_1 = torch.narrow(a, 1, 0, K)
c = torch.mm(a_1, b)
return c
f(a, b)
self.verify_compiled_kernels(GB_count=3)
# make sure we correctly generate the grid info
compiled_module = self.get_compiled_module()
with open(compiled_module.__file__) as f:
source_code = f.read()
lines = source_code.split("\n")
meta = [l for l in lines if "meta0 = {" in l]
scope = {}
from torch._inductor.kernel.mm_common import mm_grid
exec(meta[0], scope)
grid = mm_grid(M, N, scope["meta0"])
FileCheck().check_count(
f"grid={grid}",
2,
exactly=1,
).run(source_code)
def test_matmul_bandwidth_computation(self):
"""
The test does a matmul and then mul. Without max-autotune, we use
the matmul in aten. So there is a single triton kernel for mul.
The kernel we generated is like:
@triton.jit
def triton_(in_out_ptr0, xnumel, XBLOCK : tl.constexpr):
Note the in_out_ptr0 argument. It's for a 1000x1000 tensor, but it's
inplace udpated, so when computing the bandwidth, we should count
the total memory access as 2 * 1000 * 1000 * 4 = 8MB. This amount is
what this test asserts.
"""
torch.set_float32_matmul_precision("high") # suggested by a warning
@torch.compile
def f(x, y):
z = x @ y
w = z * z
return w
M, N, K = 1000, 1000, 10
x = torch.rand(M, K).to(device=GPU_TYPE)
y = torch.rand(K, N).to(device=GPU_TYPE)
out = f(x, y)
compiled_module = self.get_compiled_module()
self.check_bandwidth(compiled_module, 0.008)
def test_unused_input_bandwidth_computation(self):
M, N = 5, 1000000
@torch.compile
def f(a, b, c):
return a + c
a = torch.rand(M, N, dtype=torch.float16, device=GPU_TYPE)
b = torch.rand(M, N, dtype=torch.float16, device=GPU_TYPE)
c = torch.rand(M, N, dtype=torch.float16, device=GPU_TYPE)
torch._dynamo.mark_dynamic(a, 0)
torch._dynamo.mark_dynamic(b, 0)
torch._dynamo.mark_dynamic(c, 0)
inputs = (a, b, c)
out = f(*inputs)
compiled_module = self.get_compiled_module()
# num_gb = size_a + size_c + size_out
# num_gb = (5 * 1000000 + 5 * 1000000 + 5 * 1000000) * 2 / 1e9
# = 0.030
self.check_bandwidth(compiled_module, "0.030")
def test_reduction_bandwidth_computation(self):
@torch.compile
def f(a):
return torch.sum(a, dim=1)
a = torch.rand(1000, 20, 1000, dtype=torch.float16, device=GPU_TYPE)
inputs = (a,)
out = f(*inputs)
compiled_module = self.get_compiled_module()
# num_gb = size_a + size_out
# num_gb = (1000 * 20 * 1000 + 1000 * 1000) * 2 / 1e9
# = 0.042
self.check_bandwidth(compiled_module, "0.042")
@config.patch(max_autotune=True)
def test_fused_layernorm_bandwidth_computation(self):
M, N = 10, 1000000
@torch.compile
def f(a, b, c, d):
x0 = a + b
x1 = torch.nn.functional.layer_norm(
x0, normalized_shape=(N,), weight=c, bias=d, eps=1e-05
)
x2 = torch.sigmoid(x1)
return x0 * x2
a = torch.rand(M, N, dtype=torch.float16, device=GPU_TYPE)
b = torch.rand(N, dtype=torch.float16, device=GPU_TYPE)
c = torch.rand(N, dtype=torch.float16, device=GPU_TYPE)
d = torch.rand(N, dtype=torch.float16, device=GPU_TYPE)
inputs = (a, b, c, d)
out = f(*inputs)
compiled_module = self.get_compiled_module()
# num_gb = size_a + size_b + size_c + size_d + size_out
# num_gb = (10 * 1000000 + 1000000 + 1000000 + 1000000 + 10 * 1000000) * 2 / 1e9
# = 0.046
self.check_bandwidth(compiled_module, "0.046")
def test_slice_add_cat_bandwidth_computation(self):
M, N = 5, 1000000
@torch.compile
def f(a, b, c):
x0 = torch.narrow(b, 1, N, N)
# broadcasting
x1 = x0 + c
return torch.cat([a, x1], dim=1)
a = torch.rand(M, N, dtype=torch.float16, device=GPU_TYPE)
b = torch.rand(M, N * 5, dtype=torch.float16, device=GPU_TYPE)
c = torch.rand(N, dtype=torch.float16, device=GPU_TYPE)
torch._dynamo.mark_dynamic(a, 0)
torch._dynamo.mark_dynamic(b, 0)
inputs = (a, b, c)
out = f(*inputs)
compiled_module = self.get_compiled_module()
# we overestimate the size of "slice_b" due to torch.cat
# num_gp = size_a + size_slice_b + size_c + size_out
# num_gb = (5 * 1000000 + 5 * 2000000 + 1000000 + 5 * 2000000) * 2 / 1e9
# = 0.052
self.check_bandwidth(compiled_module, "0.052")
def test_slice_add_bandwidth_computation(self):
M, N = 5, 1000000
@torch.compile
def f(a, b, c):
x0 = torch.narrow(b, 1, N, N)
return a + x0 + c
a = torch.rand(M, N, dtype=torch.float16, device=GPU_TYPE)
b = torch.rand(M, N * 5, dtype=torch.float16, device=GPU_TYPE)
c = torch.rand(N, dtype=torch.float16, device=GPU_TYPE)
torch._dynamo.mark_dynamic(a, 0)
torch._dynamo.mark_dynamic(b, 0)
inputs = (a, b, c)
out = f(*inputs)
compiled_module = self.get_compiled_module()
# num_gb = size_a + size_slice_b + size_c + out_size
# num_gb = (5 * 1000000 + 5 * 1000000 + 1000000 + 5 * 1000000) * 2 / 1e9
# = 0.032
self.check_bandwidth(compiled_module, "0.032")
def test_mm_slice_add_bandwidth_computation(self):
M, N, K = 1000, 1000, 30
@torch.compile
def f(a, b, c):
x0 = torch.mm(a, b)
x1 = torch.narrow(c, 1, 20 * N, N)
x2 = torch.narrow(c, 1, 21 * N, N)
return x0 + x1 + x2
a = torch.rand(M, K, dtype=torch.float16, device=GPU_TYPE)
b = torch.rand(K, N, dtype=torch.float16, device=GPU_TYPE)
c = torch.rand(N, N * 100, dtype=torch.float16, device=GPU_TYPE)
inputs = (a, b, c)
out = f(*inputs)
compiled_module = self.get_compiled_module()
# torch.mm becomes an extern kernel, so we measure the nbytes
# for the pointwise add kernel:
# num_gb = x0 + 2 * size_slice_c + size_out
# num_gb = (1000 * 1000 + 2 * 1000 * 1000 + 1000 * 1000) * 2/ 1e9
# = 0.008
num_gb = "0.008"
if GPU_TYPE == "xpu":
# In XPU backend, mm + add + add will be fused as admm + add
# And CUDA prefer not fuse add + mm, please check in function
# `should_prefer_unfused_addmm` in torch/_inductor/fx_passes/post_grad.py
num_gb = "0.006"
self.check_bandwidth(compiled_module, num_gb)
def test_mm_slice_add_bandwidth_computation_2(self):
M, N, K = 1000, 1000, 30
@torch.compile
def f(a, b, c):
x0 = torch.mm(a, b)
x1 = torch.narrow(c, 1, 20 * N, N)
x2 = torch.narrow(c, 1, 20 * N, N)
return x0 + x1 + x2
a = torch.rand(M, K, dtype=torch.float16, device=GPU_TYPE)
b = torch.rand(K, N, dtype=torch.float16, device=GPU_TYPE)
c = torch.rand(N, N * 100, dtype=torch.float16, device=GPU_TYPE)
inputs = (a, b, c)
out = f(*inputs)
compiled_module = self.get_compiled_module()
# torch.mm becomes an extern kernel, so we measure the nbytes
# for the pointwise add kernel:
# num_gb = x0 + size_slice_c + size_out
# num_gb = (1000 * 1000 + 1000 * 1000 + 1000 * 1000) * 2 / 1e9
# = 0.006
# note that we only count one size_slice_c because two accesses
# have the same index.
self.check_bandwidth(compiled_module, "0.006")
@expectedFailureXPU
@config.patch(max_autotune=True, max_autotune_gemm_backends="TRITON")
def test_slice_mm_bandwidth_computation(self):
M, N, K = 1000, 2000, 3000
@torch.compile
def f(a, b):
x = torch.narrow(a, 1, K, K)
return torch.mm(x, b)
a = torch.rand(M, 3 * K, dtype=torch.float16, device=GPU_TYPE)
b = torch.rand(K, N, dtype=torch.float16, device=GPU_TYPE)
torch._dynamo.mark_dynamic(a, 0)
inputs = (a, b)
out = f(*inputs)
compiled_module = self.get_compiled_module()
# c[1000, 2000] = x[1000, 3000] @ b[3000, 2000]
# num_gb = (1000 * 2000 + 1000 * 3000 + 3000 * 2000) * 2 / 1e9
# = 0.022
self.check_bandwidth(compiled_module, "0.022")
def test_star_dep(self):
"""
Test the bandwidth estimation for StarDep
"""
@torch.compile
def f(a, b):
a[b] = 3.0
a = torch.rand(10000, 5000, device=GPU_TYPE)
b = torch.randint(
0, 10000, [20000], device=GPU_TYPE, dtype=torch.int32
).unsqueeze(1)
f(a, b)
compiled_module = self.get_compiled_module()
# 20000 * 4 = 80KB for b
# 20000 * 5000 * 4 = 200MB for a
self.check_bandwidth(compiled_module, "0.200")
@config.patch("triton.unique_kernel_names", True)
@config.patch(benchmark_kernel=False)
@config.patch(compile_threads=1)
def test_remove_inductor_deps(self):
@torch.compile
def f(a):
return a.cos().sin()
a = torch.randn(5, device=GPU_TYPE)
f(a)
compiled_module = self.get_compiled_module()
cleaned_triton = self.verify_remove_inductor_deps(compiled_module)
@config.patch("triton.unique_kernel_names", True)
@config.patch(benchmark_kernel=False)
@config.patch(compile_threads=1)
def test_remove_inductor_deps_multiple_kernels(self):
@torch.compile
def f(a):
a = torch.mm(a, a)
a = a.cos().sin()
a = torch.mm(a, a)
a = torch.softmax(a, dim=-1)
return a
a = torch.randn(5, 5, device=GPU_TYPE)
f(a)
compiled_module = self.get_compiled_module()
self.verify_remove_inductor_deps(compiled_module)
@config.patch("triton.unique_kernel_names", True)
@config.patch("triton.unique_kernel_names", True)
@config.patch(benchmark_kernel=False)
@config.patch(compile_threads=1)
@config.patch(max_autotune=True, max_autotune_gemm_backends="TRITON")
def test_remove_inductor_deps_templates(self):
@torch.compile
def f(a):
a = torch.mm(a, a)
a = a.cos()
a = torch.mm(a, a)
a = a.sin()
return a
a = torch.randn(128, 128, device=GPU_TYPE)
f(a)
compiled_module = self.get_compiled_module()
self.verify_remove_inductor_deps(compiled_module)
if __name__ == "__main__":
if HAS_GPU:
run_tests()