forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_efficient_conv_bn_eval.py
230 lines (190 loc) · 7.3 KB
/
test_efficient_conv_bn_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
# Owner(s): ["module: inductor"]
import copy
import importlib
import itertools
import os
import sys
import unittest
import torch
from torch import nn
# Make the helper files in test/ importable
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(pytorch_test_dir)
from torch._dynamo.utils import counters
from torch._inductor import config as inductor_config
from torch._inductor.test_case import TestCase
from torch.testing._internal.common_utils import IS_CI, IS_WINDOWS, TEST_WITH_ASAN
from torch.testing._internal.inductor_utils import HAS_CPU, HAS_CUDA
if IS_WINDOWS and IS_CI:
sys.stderr.write(
"Windows CI does not have necessary dependencies for test_torchinductor yet\n"
)
if __name__ == "__main__":
sys.exit(0)
raise unittest.SkipTest("requires sympy/functorch/filelock")
importlib.import_module("functorch")
importlib.import_module("filelock")
from inductor.test_torchinductor import copy_tests
class ConvOp(nn.Module):
expected_optimization_count = 1
def __init__(
self,
conv_class,
bn_class,
use_bias,
in_channels,
out_channels,
device,
**kwargs,
):
super().__init__()
self.conv = conv_class(in_channels, out_channels, bias=use_bias, **kwargs).to(
device
)
self.bn = bn_class(out_channels).to(device)
def forward(self, x):
x = self.conv(x)
return self.bn(x)
class MultiUserConvOp(nn.Module):
expected_optimization_count = 3
def __init__(
self,
conv_class,
bn_class,
use_bias,
in_channels,
out_channels,
device,
**kwargs,
):
super().__init__()
self.conv1 = conv_class(in_channels, out_channels, bias=use_bias, **kwargs).to(
device
)
self.bn1 = bn_class(out_channels).to(device)
self.conv2 = conv_class(out_channels, out_channels, bias=use_bias, **kwargs).to(
device
)
self.bn2 = bn_class(out_channels).to(device)
self.conv3 = conv_class(out_channels, out_channels, bias=use_bias, **kwargs).to(
device
)
self.bn3 = bn_class(out_channels).to(device)
def forward(self, x):
# this conv-bn pair can use efficient_conv_bn_eval
x = self.bn1(self.conv1(input=x))
# this conv-bn pair cannot use efficient_conv_bn_eval feature
# just for the second forward of the `self.conv2`
x = self.bn2(input=self.conv2(self.conv2(x)))
# this conv-bn pair can use efficient_conv_bn_eval feature
# just for the first forward of the `self.bn3`
# test for multiple users of one computation node
x = self.bn3(input=self.conv3(input=x))
x = self.bn3(x) + x
return x
class EfficientConvBNEvalTemplate(TestCase):
@inductor_config.patch({"efficient_conv_bn_eval_fx_passes": True})
def test_basic(self):
def test_conv_bn_eval(
test_class, use_bias, module, sync_bn, decompose_nn_module
):
from functorch import make_fx
from torch._dispatch.python import enable_python_dispatcher
kwargs = {"kernel_size": 3, "stride": 2} if module[0] != nn.Linear else {}
mod_eager = test_class(
module[0],
module[1],
use_bias,
3,
32,
self.device,
**kwargs,
).eval()
# Copy module to test backward
mod_optimized = copy.deepcopy(mod_eager)
if sync_bn:
mod_eager = nn.SyncBatchNorm.convert_sync_batchnorm(mod_eager).eval()
mod_optimized = nn.SyncBatchNorm.convert_sync_batchnorm(
mod_optimized
).eval()
torch._dynamo.reset()
inps = [4, 3]
# Conv shape goes from big to small, and ConvTranspose shape goes from small to big
spatial_d = (
4 if issubclass(module[0], nn.modules.conv._ConvTransposeNd) else 96
)
if module[0] == nn.Conv1d or module[0] == nn.ConvTranspose1d:
inps += [spatial_d] * 1
if module[0] == nn.Conv2d or module[0] == nn.ConvTranspose2d:
inps += [spatial_d] * 2
if module[0] == nn.Conv3d or module[0] == nn.ConvTranspose3d:
inps += [spatial_d] * 3
inp = torch.rand(inps).to(self.device)
if decompose_nn_module:
with enable_python_dispatcher():
mod_optimized = make_fx(mod_optimized, pre_dispatch=True)(inp)
mod_optimized = torch.compile(mod_optimized)
original_value = counters["inductor"]["efficient_conv_bn_eval"]
optim_eager = torch.optim.SGD(mod_eager.parameters(), lr=1e-3)
optim_optimized = torch.optim.SGD(mod_optimized.parameters(), lr=1e-3)
optim_eager.zero_grad()
optim_optimized.zero_grad()
# test forward
out_eager = mod_eager(inp)
out_optimized = mod_optimized(inp)
self.assertEqual(out_optimized, out_eager, atol=2e-04, rtol=1e-5)
out_eager.mean().backward()
out_optimized.mean().backward()
optim_eager.step()
optim_optimized.step()
# test forward (by testing forward again after one training iteration)
inp_bw = torch.rand_like(inp)
out_eager_bw = mod_eager(inp_bw)
out_optimized_bw = mod_optimized(inp_bw)
self.assertEqual(out_eager_bw, out_optimized_bw, atol=2e-04, rtol=1e-5)
current_value = counters["inductor"]["efficient_conv_bn_eval"]
self.assertEqual(
current_value - original_value, test_class.expected_optimization_count
)
conv_bias = [True, False]
modules = [
(nn.Linear, nn.BatchNorm1d),
(nn.Conv1d, nn.BatchNorm1d),
(nn.Conv2d, nn.BatchNorm2d),
(nn.Conv3d, nn.BatchNorm3d),
(nn.ConvTranspose1d, nn.BatchNorm1d),
(nn.ConvTranspose2d, nn.BatchNorm2d),
(nn.ConvTranspose3d, nn.BatchNorm3d),
]
test_classes = [ConvOp, MultiUserConvOp]
sync_bns = [False, True]
decompose_nn_modules = [False, True]
for (
test_class,
use_bias,
module,
sync_bn,
decompose_nn_module,
) in itertools.product(
test_classes,
conv_bias,
modules,
sync_bns,
decompose_nn_modules,
):
test_conv_bn_eval(
test_class, use_bias, module, sync_bn, decompose_nn_module
)
if HAS_CPU and not torch.backends.mps.is_available():
class EfficientConvBNEvalCpuTests(TestCase):
device = "cpu"
copy_tests(EfficientConvBNEvalTemplate, EfficientConvBNEvalCpuTests, "cpu")
if HAS_CUDA and not TEST_WITH_ASAN:
class EfficientConvBNEvalCudaTests(TestCase):
device = "cuda"
copy_tests(EfficientConvBNEvalTemplate, EfficientConvBNEvalCudaTests, "cuda")
del EfficientConvBNEvalTemplate
if __name__ == "__main__":
from torch._inductor.test_case import run_tests
if HAS_CPU or HAS_CUDA:
run_tests(needs="filelock")