forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_dependencies.py
137 lines (115 loc) · 4.03 KB
/
test_dependencies.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# Owner(s): ["module: inductor"]
import contextlib
import torch
from torch._inductor.dependencies import MemoryDep
from torch._inductor.graph import GraphLowering
from torch._inductor.ir import Buffer, FixedLayout, Pointwise
from torch._inductor.test_case import TestCase as InductorTestCase
from torch._inductor.utils import sympy_index_symbol
from torch._inductor.virtualized import ops, V
from torch.testing._internal.inductor_utils import HAS_CPU, HAS_CUDA
class TestDependencies(InductorTestCase):
def _create_buffer(self, name, shape, dtype=torch.float32):
return Buffer(name, FixedLayout(torch.device("cuda:0"), dtype, shape))
def setUp(self):
super().setUp()
class DummyModule(torch.nn.Module):
def forward(self, x):
return x * 2
self._gm = torch.fx.symbolic_trace(DummyModule())
self._graph = GraphLowering(self._gm)
self._stack = contextlib.ExitStack()
self._stack.enter_context(V.set_graph_handler(self._graph))
def tearDown(self):
self._stack.close()
super().tearDown()
def test_bucketize_dependencies(self):
offsets = self._create_buffer("offsets", (1025,), torch.int32)
def inner_fn(index):
idx = index[0]
return ops.bucketize(
values=idx,
offsets_name=offsets.get_name(),
offsets_size=offsets.get_size()[0],
indexing_dtype=torch.int32,
right=True,
)
pointwise = Pointwise.create(
device=torch.device("cuda:0"),
dtype=torch.int32,
inner_fn=inner_fn,
ranges=[1024 * 4],
)
self.assertEqual(len(pointwise.get_reads()), 1)
def test_get_offset(self):
x = sympy_index_symbol("x")
y = sympy_index_symbol("y")
var_ranges = {
x: 1024,
y: 2048,
}
dep1 = MemoryDep(
"dep1",
x * 2048 + y,
list(var_ranges.keys()),
list(var_ranges.values()),
)
dep2 = MemoryDep(
"dep2",
x * 2048 + y + 1024,
list(var_ranges.keys()),
list(var_ranges.values()),
)
self.assertEqual(dep1.get_offset(), 0)
self.assertEqual(dep2.get_offset(), 1024)
def test_normalize_with_stride_order_equal(self):
x = sympy_index_symbol("x")
y = sympy_index_symbol("y")
var_ranges = {
x: 1024,
y: 2048,
}
loop_order1 = MemoryDep(
"access_the_same_buffer",
x * 2048 + y,
[x, y],
[1024, 2048],
)
loop_order2 = MemoryDep(
"access_the_same_buffer",
x * 2048 + y,
[y, x],
[2048, 1024],
)
self.assertTrue(loop_order1 != loop_order2)
normalized_loop_order1 = loop_order1.normalize_with_stride_order()
normalized_loop_order2 = loop_order2.normalize_with_stride_order()
self.assertTrue(normalized_loop_order1 == normalized_loop_order2)
def test_normalize_with_stride_order_unequal(self):
x = sympy_index_symbol("x")
y = sympy_index_symbol("y")
var_ranges = {
x: 1024,
y: 2048,
}
loop_order1 = MemoryDep(
"access_the_same_buffer",
x * 2048 + y,
[x, y],
[1024, 2048],
)
loop_order2 = MemoryDep(
"access_the_same_buffer",
x * 2048 + y + 5,
[y, x],
[2048, 1024],
)
self.assertTrue(loop_order1 != loop_order2)
normalized_loop_order1 = loop_order1.normalize_with_stride_order()
normalized_loop_order2 = loop_order2.normalize_with_stride_order()
# unequal due to different offset
self.assertTrue(normalized_loop_order1 != normalized_loop_order2)
if __name__ == "__main__":
from torch._inductor.test_case import run_tests
if HAS_CPU and HAS_CUDA:
run_tests("sympy")