forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_cutlass_backend.py
725 lines (626 loc) · 29.5 KB
/
test_cutlass_backend.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
# Owner(s): ["module: inductor"]
import logging
import os
import unittest
from typing import Callable, List, Optional
from unittest import mock
import torch
from torch._dynamo.utils import counters
from torch._inductor import config
from torch._inductor.codegen.cuda.cuda_kernel import CUDATemplateCaller
from torch._inductor.codegen.cuda.cutlass_utils import get_max_alignment
from torch._inductor.ir import ChoiceCaller, FixedLayout
from torch._inductor.select_algorithm import NoValidChoicesError
from torch._inductor.test_case import run_tests, TestCase
from torch._inductor.utils import fresh_inductor_cache
from torch.testing._internal.common_cuda import SM75OrLater, SM80OrLater, SM90OrLater
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
)
from torch.testing._internal.inductor_utils import HAS_CPU, HAS_CUDA
torch.set_float32_matmul_precision("high")
if HAS_CUDA:
torch.cuda.memory._set_allocator_settings("expandable_segments:False")
_CUTLASS_DIR = os.path.join(os.path.dirname(__file__), "../../third_party/cutlass/")
log = logging.getLogger(__name__)
HAS_CUDA = HAS_CUDA and not torch.version.hip
SM75OrLater = SM75OrLater and not torch.version.hip
SM80OrLater = SM80OrLater and not torch.version.hip
SM90OrLater = SM90OrLater and not torch.version.hip
def _get_path_without_sccache() -> str:
"""
Get the PATH environment variable without sccache.
"""
path_envs = os.environ.get("PATH", "").split(":")
path_envs = [env for env in path_envs if "/opt/cache/bin" not in env]
return ":".join(path_envs)
@instantiate_parametrized_tests
class TestCutlassBackend(TestCase):
def setUp(self):
# The new inductor cache refresh mechanism
# introduced with https://github.com/pytorch/pytorch/pull/122661
# interacts badly with persistent subprocesses during
# autotuning. So we need to disable automatic cache refresh
# before calling setUp() on the parent class.
old_disable_fresh_cache_envvar = os.environ.get(
"INDUCTOR_TEST_DISABLE_FRESH_CACHE", ""
)
try:
os.environ["INDUCTOR_TEST_DISABLE_FRESH_CACHE"] = "1"
super().setUp()
finally:
os.environ[
"INDUCTOR_TEST_DISABLE_FRESH_CACHE"
] = old_disable_fresh_cache_envvar
torch.random.manual_seed(1234)
@unittest.skipIf(not SM75OrLater, "need sm_75")
@unittest.skipIf(config.is_fbcode(), "fbcode requires different CUTLASS path setup")
@unittest.mock.patch.dict(os.environ, {"PATH": _get_path_without_sccache()})
def test_max_autotune_cutlass_threshold(self):
"""
Make sure Cutlass GEMM threshold works as intended.
"""
if torch.version.hip:
return
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
def mm(a, b):
return a @ b
a = torch.randn(100, 10).cuda().half()
b = torch.randn(10, 100).cuda().half()
with config.patch(
{
"max_autotune": True,
"autotune_in_subproc": True,
"max_autotune_gemm_backends": "CUTLASS,ATen",
"compile_threads": 4,
"cuda.cutlass_backend_min_gemm_size": 100000,
"cuda.cutlass_dir": _CUTLASS_DIR,
"cuda.cutlass_max_profiling_configs": 2,
}
):
from torch._inductor.codegen.cuda.cuda_kernel import CUDATemplateCaller
with mock.patch(
"torch._inductor.select_algorithm.autotune_select_algorithm"
) as mocked_select_algorithm:
Y_compiled = torch.compile(mm, dynamic=False)(a, b)
Y = mm(a, b)
passed_choice_callers: List[ChoiceCaller] = mocked_select_algorithm[0][
1
]
assert all(
isinstance(cc, ChoiceCaller) for cc in passed_choice_callers
), "Argument 1 to autotune_select_algorithm should be a list of ChoiceCaller instances"
# We expect that no Cutlass Kernels are considered, due to the threshold
assert all(
not isinstance(cc, CUDATemplateCaller)
for cc in passed_choice_callers
), "Cutlass Kernels should have been filtered, GEMM size is too small"
torch.testing.assert_close(Y_compiled, Y)
@unittest.skipIf(not SM75OrLater, "need sm_75")
@unittest.skipIf(config.is_fbcode(), "fbcode requires different CUTLASS path setup")
@unittest.mock.patch.dict(os.environ, {"PATH": _get_path_without_sccache()})
def test_max_autotune_precompile(self):
"""
Make sure autotuning mm in sub processes work without crashes.
"""
if torch.version.hip:
return
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
def mm(a, b):
return a @ b
a = torch.randn(100, 10).cuda().half()
b = torch.randn(10, 100).cuda().half()
with config.patch(
{
"max_autotune": True,
"autotune_in_subproc": True,
"max_autotune_gemm_backends": "CUTLASS,Triton,ATen",
"compile_threads": 4,
"cuda.cutlass_dir": _CUTLASS_DIR,
"cuda.cutlass_max_profiling_configs": 2,
}
):
Y_compiled = torch.compile(mm, dynamic=False)(a, b)
Y = mm(a, b)
torch.testing.assert_close(Y_compiled, Y)
# TODO: Enable dynamic test cases when dynamic support is added.
@unittest.skipIf(not SM75OrLater, "need sm_75")
@unittest.skipIf(config.is_fbcode(), "fbcode requires different CUTLASS path setup")
@parametrize("dynamic", (False, True))
@parametrize("max_autotune_gemm_backends", ("CUTLASS", "ATen,Triton,CUTLASS"))
@unittest.mock.patch.dict(os.environ, {"PATH": _get_path_without_sccache()})
def test_max_autotune_cutlass_backend_regular_mm(
self, dynamic: bool, max_autotune_gemm_backends: str
):
"""
Make sure autotuning mm in sub processes work without crashes.
"""
if max_autotune_gemm_backends == "CUTLASS" and torch.version.hip:
return
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
def mm(a, b):
return a @ b
a = torch.randn(128, 16).cuda().half()
b = torch.randn(16, 128).cuda().half()
with config.patch(
{
"max_autotune": True,
"autotune_in_subproc": False,
"max_autotune_gemm_backends": max_autotune_gemm_backends,
"cuda.cutlass_dir": _CUTLASS_DIR,
"cuda.cutlass_max_profiling_configs": 2,
}
):
Y_compiled = torch.compile(mm, dynamic=dynamic)(a, b)
Y = mm(a, b)
torch.testing.assert_close(Y_compiled, Y)
@unittest.skipIf(not SM90OrLater, "need sm_90")
@unittest.skipIf(config.is_fbcode(), "fbcode requires different CUTLASS path setup")
@unittest.mock.patch.dict(os.environ, {"PATH": _get_path_without_sccache()})
def test_max_autotune_cutlass_backend_regular_mm_streamk(
self, dynamic: bool = False, max_autotune_gemm_backends: str = "CUTLASS"
):
"""
Make sure autotuning mm in sub processes work without crashes.
"""
if max_autotune_gemm_backends == "CUTLASS" and torch.version.hip:
return
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
def mm(a, b):
return a @ b
a = torch.randn(128, 16).cuda().half()
b = torch.randn(16, 128).cuda().half()
with config.patch(
{
"max_autotune": True,
"autotune_in_subproc": True,
"max_autotune_gemm_backends": max_autotune_gemm_backends,
"cuda.cutlass_dir": _CUTLASS_DIR,
"cuda.cutlass_max_profiling_configs": 2,
"cuda.cutlass_op_allowlist_regex": "stream_k", # only stream-k GEMM Kernels
}
):
for M, K, N in (
(128, 16, 128),
(1024, 256, 1024),
(
16384,
1024,
16384,
),
(
16384,
1408,
16384,
),
):
a = torch.randn(M, K).cuda().half()
b = torch.randn(K, N).cuda().half()
Y_compiled = torch.compile(mm, dynamic=dynamic)(a, b)
Y = mm(a, b)
# we need relaxed numerical limits due to the sheer size of the
# matmuls involved. Many small addition differences add up.
torch.testing.assert_close(Y_compiled, Y, atol=0.01, rtol=0.01)
def _test_max_autotune_cutlass_backend_epilogue_fusion(
self,
dynamic: bool = False,
max_autotune_gemm_backends: str = "CUTLASS",
mixed_precision=False,
fp16=True,
expected_fuse_count=0,
mm: Callable[[torch.Tensor, torch.Tensor], torch.Tensor] = None,
batch_size: Optional[int] = None,
):
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = (
mixed_precision
)
# Note: The ops that are available
# also depend on the alignment of the shapes
# so if these shapes don't all align to at least 8 elements
# it can happen that no Cutlass 3.x op is available
# that allows fusions
if batch_size is None:
a = torch.randn(256, 32).cuda()
b = torch.randn(32, 256).cuda()
else:
a = torch.randn(batch_size, 256, 32).cuda()
b = torch.randn(batch_size, 32, 256).cuda()
if fp16:
a = a.half()
b = b.half()
with config.patch(
{
"max_autotune": True,
"autotune_in_subproc": True,
"max_autotune_gemm_backends": max_autotune_gemm_backends,
"cuda.cutlass_dir": _CUTLASS_DIR,
"cuda.cutlass_max_profiling_configs": 4,
"cuda.version": "12.2", # required to enable the Kernels we need
}
):
counters["inductor"]["cuda_epilogue_fusion_counter"] = 0
Y_compiled = torch.compile(mm, dynamic=dynamic)(a, b)
Y = mm(a, b)
actual_count = counters["inductor"]["cuda_epilogue_fusion_counter"]
assert (
actual_count == expected_fuse_count
), f"Expected fuse count of {expected_fuse_count} but got {actual_count}"
torch.testing.assert_close(Y_compiled, Y, atol=1e-2, rtol=1e-2)
@unittest.skipIf(not SM90OrLater, "need sm_90")
@unittest.skipIf(torch.version.hip, "HIP not supported")
@unittest.skipIf(config.is_fbcode(), "fbcode requires different CUTLASS path setup")
def test_max_autotune_cutlass_backend_simple_fusion_fp16(self):
def mm(a, b):
return (a @ b) * 3.0
# The pointwise ops seem to be pre-fused into a single Pointwise
self._test_max_autotune_cutlass_backend_epilogue_fusion(
mixed_precision=False, fp16=True, expected_fuse_count=0, mm=mm
)
@unittest.skipIf(not SM90OrLater, "need sm_90")
@unittest.skipIf(torch.version.hip, "HIP not supported")
@unittest.skipIf(config.is_fbcode(), "fbcode requires different CUTLASS path setup")
def test_max_autotune_cutlass_backend_simple_fusion_fp16_fp32acc(self):
def mm(a, b):
return (a @ b) * 3.0
self._test_max_autotune_cutlass_backend_epilogue_fusion(
mixed_precision=True, fp16=True, expected_fuse_count=0, mm=mm
)
@unittest.skipIf(not SM90OrLater, "need sm_90")
@unittest.skipIf(torch.version.hip, "HIP not supported")
@unittest.skipIf(config.is_fbcode(), "fbcode requires different CUTLASS path setup")
def test_max_autotune_cutlass_backend_chained_fusion_fp16(self):
def mm(a, b):
return (a @ b) * 3.3 - 1.234
# The pointwise ops seem to be pre-fused into a single Pointwise
self._test_max_autotune_cutlass_backend_epilogue_fusion(
mixed_precision=False, fp16=True, expected_fuse_count=0, mm=mm
)
@unittest.skipIf(not SM90OrLater, "need sm_90")
@unittest.skipIf(torch.version.hip, "HIP not supported")
@unittest.skipIf(config.is_fbcode(), "fbcode requires different CUTLASS path setup")
def test_max_autotune_cutlass_backend_chained_fusion_fp16_fp32acc(self):
def mm(a, b):
return (a @ b) * 3.3 - 1.234
self._test_max_autotune_cutlass_backend_epilogue_fusion(
mixed_precision=True, fp16=True, expected_fuse_count=0, mm=mm
)
@unittest.skipIf(not SM90OrLater, "need sm_90")
@unittest.skipIf(torch.version.hip, "HIP not supported")
@unittest.skipIf(config.is_fbcode(), "fbcode requires different CUTLASS path setup")
def test_max_autotune_cutlass_backend_relu_fusion_fp16(self):
def mm(a, b):
return torch.nn.functional.relu((a @ b) * 3.3 - 1.234)
self._test_max_autotune_cutlass_backend_epilogue_fusion(
mixed_precision=False, fp16=True, expected_fuse_count=0, mm=mm
)
@unittest.skipIf(not SM90OrLater, "need sm_90")
@unittest.skipIf(torch.version.hip, "HIP not supported")
@unittest.skipIf(config.is_fbcode(), "fbcode requires different CUTLASS path setup")
def test_max_autotune_cutlass_backend_relu_fusion_fp16_fp32acc(self):
def mm(a, b):
return torch.nn.functional.relu((a @ b) * 3.3 - 1.234)
# The pointwise ops seem to be pre-fused into a single Pointwise
self._test_max_autotune_cutlass_backend_epilogue_fusion(
mixed_precision=True, fp16=True, expected_fuse_count=0, mm=mm
)
@unittest.skipIf(not SM90OrLater, "need sm_90")
@unittest.skipIf(torch.version.hip, "HIP not supported")
@unittest.skipIf(config.is_fbcode(), "fbcode requires different CUTLASS path setup")
def test_max_autotune_cutlass_backend_relu6_fusion_fp16_fp32acc(self):
def mm(a, b):
return torch.clamp(torch.nn.functional.relu(a @ b), max=6.0)
# The pointwise ops seem to be pre-fused into a single Pointwise
self._test_max_autotune_cutlass_backend_epilogue_fusion(
mixed_precision=True, fp16=True, expected_fuse_count=0, mm=mm
)
@unittest.skipIf(not SM90OrLater, "need sm_90")
@unittest.skipIf(torch.version.hip, "HIP not supported")
@unittest.skipIf(config.is_fbcode(), "fbcode requires different CUTLASS path setup")
def test_max_autotune_cutlass_backend_no_fusion_dtype_mismatch(self):
def mm(a, b):
# this should not be fused, since the output dtype is different from the matmul dtype
return (a @ b).to(torch.float32) * 0.00001
self._test_max_autotune_cutlass_backend_epilogue_fusion(
mixed_precision=True, fp16=True, expected_fuse_count=0, mm=mm
)
def test_max_autotune_cutlass_backend_simple_bmm(self):
def bmm(a, b):
return torch.bmm(a, b)
self._test_max_autotune_cutlass_backend_epilogue_fusion( # test bmm
mixed_precision=False,
fp16=True,
expected_fuse_count=0,
mm=bmm,
batch_size=10,
)
@unittest.skipIf(not SM90OrLater, "need sm_90")
@unittest.skipIf(torch.version.hip, "HIP not supported")
@unittest.skipIf(config.is_fbcode(), "fbcode requires different CUTLASS path setup")
def test_max_autotune_cutlass_backend_shape_dependent_normalization_fusion(self):
def mm(a, b):
return (a @ b) / b.size(1)
self._test_max_autotune_cutlass_backend_epilogue_fusion(
mixed_precision=True, fp16=True, expected_fuse_count=0, mm=mm
)
# TODO: Enable dynamic test cases when dynamic support is added.
@unittest.skipIf(not SM75OrLater, "need sm_75")
@unittest.skipIf(config.is_fbcode(), "fbcode requires different CUTLASS path setup")
@parametrize("dynamic", (False,))
@parametrize("max_autotune_gemm_backends", ("CUTLASS", "ATen,Triton,CUTLASS"))
@unittest.mock.patch.dict(os.environ, {"PATH": _get_path_without_sccache()})
def test_max_autotune_cutlass_backend_mm_bias(
self, dynamic: bool = False, max_autotune_gemm_backends: str = "CUTLASS"
):
"""
Make sure autotuning mm in sub processes work without crashes.
"""
if max_autotune_gemm_backends == "CUTLASS" and torch.version.hip:
return
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
def mm(a, b, bias):
return torch.nn.functional.linear(a, b, bias)
a = torch.randn(2048, 4096).cuda().half()
bias = torch.randn(2048).cuda().half()
with config.patch(
{
"max_autotune": True,
"autotune_in_subproc": True,
"max_autotune_gemm_backends": max_autotune_gemm_backends,
"cuda.cutlass_dir": _CUTLASS_DIR,
"cuda.cutlass_max_profiling_configs": 2,
}
):
Y = mm(a, a, bias)
Y_compiled = torch.compile(mm, dynamic=dynamic)(a, a, bias)
torch.testing.assert_close(Y_compiled, Y, atol=1e-1, rtol=1e-1)
@unittest.skipIf(not SM75OrLater, "need sm_75")
@unittest.skipIf(config.is_fbcode(), "fbcode requires different CUTLASS path setup")
@parametrize("dynamic", (False,))
@parametrize("max_autotune_gemm_backends", ("CUTLASS", "ATen,Triton,CUTLASS"))
@unittest.mock.patch.dict(os.environ, {"PATH": _get_path_without_sccache()})
def test_max_autotune_cutlass_backend_addmm(
self, dynamic, max_autotune_gemm_backends
):
"""
Make sure autotuning addmm in sub processes work without crashes.
"""
if max_autotune_gemm_backends == "CUTLASS" and torch.version.hip:
return
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
def addmm(x, a, b, alpha, beta):
return torch.addmm(x, a, b, alpha=alpha, beta=beta)
def compare_results(
m: int, k: int, n: int, alpha: float, beta: float, x_shape: List[int]
) -> None:
x = torch.randn(x_shape).cuda().half()
a = torch.randn(m, k).cuda().half()
b = torch.randn(k, n).cuda().half()
y_expected = addmm(x, a, b, alpha, beta)
compiled_fn = torch.compile(addmm, dynamic=dynamic)
y = compiled_fn(x, a, b, alpha, beta)
torch.testing.assert_close(y, y_expected)
with config.patch(
{
"max_autotune": True,
# Some Cutlass Kernels fail with IMA on this example, which leads to unrecoverable CUDA errors
# unless we tune in a subproc here.
"autotune_in_subproc": True,
"max_autotune_gemm_backends": max_autotune_gemm_backends,
"cuda.cutlass_dir": _CUTLASS_DIR,
"cuda.cutlass_max_profiling_configs": 4,
"cuda.cutlass_op_allowlist_regex": "",
"cuda.cutlass_op_denylist_regex": "pingpong", # Pingpong Kernels can lead to numerical issues
}
):
# No broadcast
compare_results(4096, 25728, 2048, 2.0, 0.4, [4096, 2048])
# Broadcast first dim.
compare_results(4096, 25728, 2048, 2.0, 0.4, [2048])
# Broadcast last dim.
compare_results(4096, 25728, 2048, 2.0, 0.4, [4096, 1])
# TODO: Enable dynamic test cases when dynamic support is added.
@unittest.skipIf(not SM80OrLater, "need sm_80")
@unittest.skipIf(config.is_fbcode(), "fbcode requires different CUTLASS path setup")
@parametrize("dynamic", (False,))
@parametrize("max_autotune_gemm_backends", ("CUTLASS", "CUTLASS,ATen"))
@unittest.mock.patch.dict(os.environ, {"PATH": _get_path_without_sccache()})
def test_max_autotune_cutlass_backend_int_mm(
self, dynamic: bool, max_autotune_gemm_backends: str
):
"""
Make sure autotuning mm in sub processes work without crashes.
"""
if "CUTLASS" in max_autotune_gemm_backends.upper() and torch.version.hip:
return
def mm(a, b):
return torch._int_mm(a, b)
# CUTLASS only supports row-major/column-major combination of
# layouts for this operation, thus the transpose of tensor b
# (on the other side, Triton at the moment doesn't support
# this combination, so it's excluded from the test). Also,
# for CUTLASS alignment requirements, number of columns in
# both tensors has to be divisible by 16.
a = torch.randint(0, 5, (100, 16), dtype=torch.int8).cuda()
b = torch.randint(0, 5, (32, 16), dtype=torch.int8).cuda().T
with config.patch(
{
"max_autotune": True,
"autotune_in_subproc": True,
"max_autotune_gemm_backends": max_autotune_gemm_backends,
"cuda.cutlass_dir": _CUTLASS_DIR,
"cuda.cutlass_max_profiling_configs": 2,
}
):
Y_compiled = torch.compile(mm, dynamic=dynamic)(a, b)
Y = mm(a, b)
torch.testing.assert_close(Y_compiled, Y)
# TODO: Enable dynamic test cases when dynamic support is added.
@unittest.skipIf(not SM80OrLater, "need sm_80")
@unittest.skipIf(config.is_fbcode(), "fbcode requires different CUTLASS path setup")
@parametrize("dynamic", (False,))
@parametrize("max_autotune_gemm_backends", ("CUTLASS", "CUTLASS,Triton,ATen"))
@unittest.mock.patch.dict(os.environ, {"PATH": _get_path_without_sccache()})
def test_max_autotune_cutlass_backend_mixed_mm(
self, dynamic: bool, max_autotune_gemm_backends: str
):
"""
Make sure autotuning mm in sub processes work without crashes.
"""
if max_autotune_gemm_backends == "CUTLASS" and torch.version.hip:
return
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
def mm(a, b):
return torch.mm(a, b.to(torch.half))
# CUTLASS only supports row-major/column-major combination of
# layouts for this operation, thus the transpose of tensor b.
# Also, for CUTLASS alignment requirements, number of columns
# of the first tensor has to be divisible by 16.
a = torch.randn(100, 16).cuda().half()
b = torch.randint(0, 5, (100, 16), dtype=torch.int8).cuda().T
with config.patch(
{
"max_autotune": True,
"autotune_in_subproc": True,
"max_autotune_gemm_backends": max_autotune_gemm_backends,
"cuda.cutlass_dir": _CUTLASS_DIR,
"cuda.cutlass_max_profiling_configs": 2,
"use_mixed_mm": True,
}
):
Y_compiled = torch.compile(mm, dynamic=dynamic)(a, b)
Y = mm(a, b)
torch.testing.assert_close(Y_compiled, Y)
@unittest.skipIf(not SM90OrLater, "need sm_90")
@unittest.skipIf(config.is_fbcode(), "fbcode requires different CUTLASS path setup")
@unittest.mock.patch.dict(os.environ, {"PATH": _get_path_without_sccache()})
def test_cutlass_backend_op_denylist(
self,
):
def my_addmm(x, a, b, alpha, beta):
return torch.addmm(x, a, b, alpha=beta, beta=alpha)
x = torch.randn((128, 128)).cuda().half()
a = torch.randn(128, 128).cuda().half()
b = torch.randn(128, 128).cuda().half()
def select_no_algorithm(*args, **kwargs):
raise NoValidChoicesError
with fresh_inductor_cache():
with config.patch(
{
"max_autotune": True,
# Some Cutlass Kernels fail with IMA on this example, which leads to unrecoverable CUDA errors
# unless we tune in a subproc here.
"autotune_in_subproc": False,
"max_autotune_gemm_backends": "CUTLASS,ATen",
"cuda.cutlass_dir": _CUTLASS_DIR,
"cuda.cutlass_max_profiling_configs": 2,
"cuda.cutlass_op_allowlist_regex": "",
"cuda.cutlass_op_denylist_regex": "pingpong", # Pingpong Kernels can lead to numerical issues
}
):
with mock.patch(
"torch._inductor.kernel.mm.autotune_select_algorithm",
wraps=select_no_algorithm,
) as sa:
torch.compile(my_addmm, dynamic=False)(x, a, b, 1.0, 2.0)
args, kwargs = sa.call_args
op_name, choices, _, __ = args
assert op_name == "addmm"
cuda_template_count = 0
for choice in choices:
if isinstance(choice, CUDATemplateCaller):
choice_info = choice.info_dict()
assert (
"pingpong" not in choice_info["op_conf_name"]
), "All pingpong Kernels should have been filtered"
cuda_template_count += 1
assert cuda_template_count > 0, "No CUDATemplateCaller choices"
@unittest.skipIf(not SM90OrLater, "need sm_90")
@unittest.skipIf(config.is_fbcode(), "fbcode requires different CUTLASS path setup")
@unittest.mock.patch.dict(os.environ, {"PATH": _get_path_without_sccache()})
def test_cutlass_backend_op_allowlist(
self,
):
def addmm(x, a, b, alpha, beta):
return torch.addmm(x, a, b, alpha=alpha, beta=beta)
x = torch.randn((128, 128)).cuda().half()
a = torch.randn(128, 128).cuda().half()
b = torch.randn(128, 128).cuda().half()
def select_no_algorithm(*args, **kwargs):
raise NoValidChoicesError
with fresh_inductor_cache():
with config.patch(
{
"max_autotune": True,
# Some Cutlass Kernels fail with IMA on this example, which leads to unrecoverable CUDA errors
# unless we tune in a subproc here.
"autotune_in_subproc": False,
"max_autotune_gemm_backends": "CUTLASS,ATen",
"cuda.cutlass_dir": _CUTLASS_DIR,
"cuda.cutlass_max_profiling_configs": 2,
"cuda.cutlass_op_allowlist_regex": "pingpong",
"cuda.cutlass_op_denylist_regex": None, # Pingpong Kernels can lead to numerical issues
}
):
with mock.patch(
"torch._inductor.kernel.mm.autotune_select_algorithm",
wraps=select_no_algorithm,
) as sa:
torch.compile(addmm, dynamic=False)(x, a, b, 1.0, 1.0)
args, kwargs = sa.call_args
op_name, choices, _, __ = args
assert op_name == "addmm"
cuda_template_count = 0
for choice in choices:
if isinstance(choice, CUDATemplateCaller):
choice_info = choice.info_dict()
assert (
"pingpong" in choice_info["op_conf_name"]
), "Only pingpong Kernels should have been allowed"
cuda_template_count += 1
assert cuda_template_count > 0, "No CUDATemplateCaller choices"
@unittest.skipIf(not SM80OrLater, "need sm_90")
@unittest.skipIf(config.is_fbcode(), "fbcode requires different CUTLASS path setup")
@unittest.mock.patch.dict(os.environ, {"PATH": _get_path_without_sccache()})
def test_get_max_alignment(self):
l4 = FixedLayout("cpu", torch.half, size=(1, 2, 4), stride=(0, 4, 1))
m4 = get_max_alignment(l4)
self.assertEqual(
m4, 4, "Wrong max alignment. Should have been 4. (simple, contiguous case)"
)
l4_2 = FixedLayout("cpu", torch.half, size=(1, 4, 2), stride=(0, 1, 4))
m4_2 = get_max_alignment(l4_2)
self.assertEqual(
m4_2,
4,
"Wrong max alignment. Should have been 4. Did not deal with strides correctly",
)
l1 = FixedLayout("cpu", torch.half, size=(2, 4, 2), stride=(23, 1, 4))
m1 = get_max_alignment(l1)
self.assertEqual(
m1,
1,
"Wrong max alignment. Should have been 1. Did not take stride into account correctly",
)
l2 = FixedLayout("cpu", torch.half, size=(1, 2, 4), stride=(0, 4, 1), offset=6)
m2 = get_max_alignment(l2)
self.assertEqual(
m2, 2, "Wrong max alignment. Should have been 2. (due to choice of offset)"
)
l8 = FixedLayout(
"cpu", torch.half, size=(2, 2, 8), stride=(32, 8, 1), offset=24
)
m8 = get_max_alignment(l8)
self.assertEqual(m8, 8, "Wrong max alignment. Should have been 8.")
l4 = FixedLayout(
"cpu", torch.float32, size=(2, 2, 8), stride=(32, 8, 1), offset=24
)
m4 = get_max_alignment(l4)
self.assertEqual(
m4, 4, "Wrong max alignment. Should have been 4 (due to float32 dtype )."
)
if __name__ == "__main__":
from torch._inductor.utils import is_big_gpu
# Set env to make it work in CI.
if HAS_CUDA and HAS_CPU and is_big_gpu(0):
run_tests()