forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_binary_folding.py
258 lines (216 loc) · 8.71 KB
/
test_binary_folding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
# Owner(s): ["module: inductor"]
import functools
import importlib
import itertools
import os
import sys
import unittest
import torch
from torch import nn
from torch._inductor import config as inductor_config
from torch.testing._internal.common_cuda import TEST_CUDNN
# Make the helper files in test/ importable
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(pytorch_test_dir)
from torch.testing._internal.common_utils import IS_CI, IS_WINDOWS, TEST_WITH_ASAN
from torch.testing._internal.inductor_utils import skipCUDAIf
if IS_WINDOWS and IS_CI:
sys.stderr.write(
"Windows CI does not have necessary dependencies for test_torchinductor yet\n"
)
if __name__ == "__main__":
sys.exit(0)
raise unittest.SkipTest("requires sympy/functorch/filelock")
from inductor.test_inductor_freezing import TestCase
from inductor.test_torchinductor import check_model, check_model_cuda, copy_tests
importlib.import_module("functorch")
importlib.import_module("filelock")
from torch.testing._internal.inductor_utils import HAS_CPU, HAS_CUDA
aten = torch.ops.aten
class BinaryFoldingTemplate(TestCase):
@skipCUDAIf(TEST_CUDNN, "CUDNN has accuracy issues for this test")
def test_conv_binary_folding(self):
@torch.no_grad()
def test_conv_fusion(use_bias, module, op, scalar, add_tensor, expect_success):
class ConvOp(nn.Module):
__constants__ = ["use_scalar"]
def __init__(self, in_channels, out_channels, device, **kwargs):
super().__init__()
self.conv = module(
in_channels, out_channels, bias=use_bias, **kwargs
).to(device)
self.conv2 = module(
in_channels, out_channels, bias=use_bias, **kwargs
).to(device)
self.use_scalar = scalar
tensor_size = [1 for _ in range(self.conv.weight.ndim)]
tensor_size[1] = self.conv.weight.size(0)
self.tensor = (
add_tensor
if add_tensor is not None
else torch.rand(tensor_size).to(device)
)
self.op = op
def forward(self, x):
x = self.conv(x)
if self.use_scalar:
return self.op(x, 2.0)
else:
return self.op(x, self.tensor)
from torch._inductor.compile_fx import compile_fx, compile_fx_inner
aten_binary = {
torch.add: aten.add.Tensor,
torch.sub: aten.sub.Tensor,
torch.mul: aten.mul.Tensor,
torch.div: aten.div.Tensor,
}
n_binary_ops = 0
def my_inner_compile(gm, example_inputs, *args, **kwargs):
out = compile_fx_inner(gm, example_inputs, *args, **kwargs)
nonlocal n_binary_ops
binarry_ops = [n for n in gm.graph.nodes if n.target == aten_binary[op]]
n_binary_ops += len(binarry_ops)
return out
torch._dynamo.reset()
mod_eager = ConvOp(3, 32, self.device, kernel_size=3, stride=2).eval()
out_optimized = torch.compile(
mod_eager,
backend=functools.partial(compile_fx, inner_compile=my_inner_compile),
)
inps = [4, 3, 4]
if module == nn.Conv2d:
inps.append(inps[-1])
if module == nn.Conv3d:
inps.append(inps[-1])
inps.append(inps[-1])
torch.manual_seed(1234)
inp = torch.rand(inps).to(self.device)
out_eager = mod_eager(inp)
out_optimized = out_optimized(inp)
self.assertEqual(out_optimized, out_eager)
if expect_success:
self.assertTrue(n_binary_ops == 0)
else:
self.assertTrue(n_binary_ops == 1)
conv_bias = [True, False]
modules = [nn.Conv1d, nn.Conv2d, nn.Conv3d]
use_scalar = [True, False]
ops = [torch.add, torch.sub, torch.mul, torch.div]
for use_bias, module, pytorch_op, scalar in itertools.product(
conv_bias, modules, ops, use_scalar
):
# TODO: support scalar case
expect_success = not scalar
test_conv_fusion(
use_bias,
module,
pytorch_op,
scalar,
add_tensor=None,
expect_success=expect_success,
)
for use_bias, pytorch_op in itertools.product(conv_bias, ops):
# broadcasting add
test_conv_fusion(
use_bias,
nn.Conv2d,
pytorch_op,
False,
add_tensor=torch.rand(32, 1, 32).to(self.device),
expect_success=False,
)
# broadcasting add
test_conv_fusion(
use_bias,
nn.Conv2d,
pytorch_op,
False,
add_tensor=torch.rand(1, 1).to(self.device),
expect_success=True,
)
# add with different dtype
test_conv_fusion(
use_bias,
nn.Conv2d,
pytorch_op,
False,
add_tensor=torch.tensor([2]).to(torch.int).to(self.device),
expect_success=False,
)
@inductor_config.patch({"freezing": True})
def test_conv_bn_folding(self):
@torch.no_grad()
def test_conv_fusion(use_bias, module, expect_success):
class ConvOp(nn.Module):
def __init__(self, in_channels, out_channels, device, **kwargs):
super().__init__()
self.conv = module[0](
in_channels, out_channels, bias=use_bias, **kwargs
).to(device)
self.bn = module[1](out_channels).to(device)
def forward(self, x):
x = self.conv(x)
return self.bn(x)
from torch._inductor.compile_fx import compile_fx, compile_fx_inner
aten_binary = [
aten.add.Tensor,
aten.sub.Tensor,
aten.mul.Tensor,
aten.div.Tensor,
]
n_binary_ops = 0
def my_inner_compile(gm, example_inputs, *args, **kwargs):
out = compile_fx_inner(gm, example_inputs, *args, **kwargs)
nonlocal n_binary_ops
binarry_ops = [n for n in gm.graph.nodes if n.target in aten_binary]
n_binary_ops += len(binarry_ops)
return out
torch._dynamo.reset()
mod_eager = ConvOp(3, 32, self.device, kernel_size=3, stride=2).eval()
out_optimized = torch.compile(
mod_eager,
backend=functools.partial(compile_fx, inner_compile=my_inner_compile),
)
inps = [4, 3, 4]
if module[0] == nn.Conv2d:
inps.append(inps[-1])
if module[0] == nn.Conv3d:
inps.append(inps[-1])
inps.append(inps[-1])
inp = torch.rand(inps).to(self.device)
out_eager = mod_eager(inp)
out_optimized = out_optimized(inp)
self.assertEqual(out_optimized, out_eager, atol=2e-04, rtol=1e-5)
if expect_success:
self.assertTrue(n_binary_ops == 0)
else:
self.assertTrue(n_binary_ops > 1)
conv_bias = [True, False]
modules = [
(nn.Conv1d, nn.BatchNorm1d),
(nn.Conv2d, nn.BatchNorm2d),
(nn.Conv3d, nn.BatchNorm3d),
]
for use_bias, module in itertools.product(conv_bias, modules):
test_conv_fusion(
use_bias,
module,
expect_success=True,
)
if HAS_CPU and not torch.backends.mps.is_available():
class FreezingCpuTests(TestCase):
common = check_model
device = "cpu"
autocast = torch.cpu.amp.autocast
copy_tests(BinaryFoldingTemplate, FreezingCpuTests, "cpu")
if HAS_CUDA and not TEST_WITH_ASAN:
class FreezingCudaTests(TestCase):
common = check_model_cuda
device = "cuda"
autocast = torch.cuda.amp.autocast
copy_tests(BinaryFoldingTemplate, FreezingCudaTests, "cuda")
del BinaryFoldingTemplate
if __name__ == "__main__":
from torch._inductor.test_case import run_tests
if HAS_CPU or HAS_CUDA:
run_tests(needs="filelock")