forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_exceptions.py
234 lines (192 loc) · 6.46 KB
/
test_exceptions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# Owner(s): ["module: dynamo"]
import torch
import torch._dynamo.config
import torch._dynamo.test_case
import torch._functorch.config
import torch.utils.checkpoint
class ExceptionTests(torch._dynamo.test_case.TestCase):
def test_exception(self):
def fn(x):
x = torch.cos(x)
try:
x = torch.sin(x)
raise NotImplementedError
except Exception:
x = torch.sigmoid(x)
return x
x = torch.randn(4)
ref = fn(x)
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
res = opt_fn(x)
self.assertEqual(ref, res)
def test_exception2(self):
def fn(x):
x = torch.cos(x)
try:
x = torch.sin(x)
raise NotImplementedError
except (NotImplementedError, AttributeError) as e:
x = torch.sigmoid(x)
return x
x = torch.randn(4)
ref = fn(x)
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
res = opt_fn(x)
self.assertEqual(ref, res)
def test_exception3(self):
def fn(x):
x = torch.cos(x)
try:
x = torch.sin(x)
raise NotImplementedError("Not implemented")
except AssertionError:
x = torch.sigmoid(x)
except NotImplementedError:
x = torch.cos(x)
finally:
x = torch.cos(x)
return x
x = torch.randn(4)
ref = fn(x)
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
res = opt_fn(x)
self.assertEqual(ref, res)
def test_exception_with_another_exception(self):
def fn(x):
x = torch.cos(x)
try:
x = torch.sin(x)
raise NotImplementedError("Not implemented")
except NotImplementedError as e:
x = torch.sigmoid(x)
try:
x = torch.cos(x)
raise AssertionError
except AssertionError:
x = torch.cos(x)
x = torch.randn(4)
ref = fn(x)
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
res = opt_fn(x)
self.assertEqual(ref, res)
def test_exception_else(self):
def gn(x):
return torch.cos(x)
def fn(x):
x = torch.cos(x)
try:
x = torch.sin(x)
x = gn(x)
except Exception:
x = torch.sigmoid(x)
else:
x = torch.cos(x)
return x
x = torch.randn(4)
ref = fn(x)
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
res = opt_fn(x)
self.assertEqual(ref, res)
# TODO(anijain2305) - does not work with fullgraph=True
def test_exception_with_another_exception2(self):
def gn(x):
try:
x = torch.cos(x)
raise NotImplementedError("Not implemented")
except NotImplementedError as e:
x = torch.sigmoid(x)
raise
def fn(x):
try:
x = torch.cos(x)
gn(x)
except Exception:
pass
return x
x = torch.randn(4)
ref = fn(x)
# Cant use fullgraph=True because RERAISE is not supported
opt_fn = torch.compile(fn, backend="eager")
res = opt_fn(x)
# TODO(anijain2305) - does not work with fullgraph=True
def test_exception_with_ctx_manager(self):
def fn(x):
x = torch.cos(x)
try:
with torch.no_grad():
x = torch.sin(x)
raise NotImplementedError("Not implemented")
except NotImplementedError as e:
x = torch.sigmoid(x)
return x
x = torch.randn(4)
ref = fn(x)
# Cant use fullgraph=True because WITH_EXCEPT_START is not supported
opt_fn = torch.compile(fn, backend="eager")
res = opt_fn(x)
self.assertEqual(ref, res)
def test_exception_raised_from_child(self):
def gn():
raise NotImplementedError("foo")
def fn(x):
x = torch.cos(x)
try:
x = torch.sin(x)
gn()
x = torch.sin(x)
except Exception:
x = torch.sigmoid(x)
return x
x = torch.randn(4)
ref = fn(x)
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
res = opt_fn(x)
self.assertEqual(ref, res)
def test_nn_module_getattr(self):
class A:
def __init__(self):
self._b = 20
def __getattr__(self, name):
fixed_name = "_" + name
if fixed_name in self.__dict__:
return self.__dict__[fixed_name]
raise AttributeError(f"{name} absent")
class B(A):
def __init__(self):
self.a = 10
def __getattr__(self, name):
try:
return super().__getattr__(name)
except AttributeError:
return 30
obj = B()
def fn(x):
return x * obj.a * obj.b * obj.c
x = torch.ones(4)
ref = fn(x)
print(ref)
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
res = opt_fn(x)
self.assertEqual(ref, res)
@torch._dynamo.config.patch(inline_inbuilt_nn_modules=True)
def test_custom_getattr_on_module_exception(self):
class Foo(torch.nn.Module):
def __init__(self, a=3):
super().__init__()
self.register_parameter("a", torch.nn.Parameter(torch.ones(4) * 2))
def __getattr__(self, name):
try:
return super().__getattr__(name) # defer to nn.Module's logic
except AttributeError:
if name == "a_copy":
return self.a
raise
def forward(self, x):
return x * self.a * self.a_copy
mod = Foo()
opt_mod = torch.compile(mod, backend="eager", fullgraph=True)
x = torch.ones(4)
self.assertEqual(mod(x), opt_mod(x))
if __name__ == "__main__":
from torch._dynamo.test_case import run_tests
run_tests()