forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_lazy_ops_util.h
81 lines (63 loc) · 2.25 KB
/
test_lazy_ops_util.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
#pragma once
#include <gtest/gtest.h>
#include <torch/csrc/lazy/backend/backend_device.h>
#include <torch/csrc/lazy/core/debug_util.h>
#include <torch/csrc/lazy/core/ir.h>
#include <torch/csrc/lazy/core/tensor.h>
#include <torch/torch.h>
#include <cmath>
#include <functional>
#include <string>
#include <unordered_set>
namespace torch {
namespace lazy {
const std::unordered_set<std::string>* GetIgnoredCounters();
// Converts an at::Tensor(device=torch::kLazy) to at::Tensor(device=torch::kCPU)
// This at::Tensor can be torch::Tensor which is a Variable, or at::Tensor which
// know nothing about autograd. If the input tensor is already a CPU tensor, it
// will be returned. Needed because EqualValues and AllClose require CPU tensors
// on both sides.
at::Tensor ToCpuTensor(const at::Tensor& tensor);
// Helper function to copy a tensor to device.
torch::Tensor CopyToDevice(
const torch::Tensor& tensor,
const torch::Device& device);
bool EqualValues(at::Tensor tensor1, at::Tensor tensor2);
bool EqualValuesNoElementTypeCheck(at::Tensor tensor1, at::Tensor tensor2);
bool CloseValues(
at::Tensor tensor1,
at::Tensor tensor2,
double rtol = 1e-5,
double atol = 1e-8);
static inline void AllClose(
at::Tensor tensor,
at::Tensor xla_tensor,
double rtol = 1e-5,
double atol = 1e-8) {
EXPECT_TRUE(CloseValues(tensor, xla_tensor, rtol, atol));
}
static inline void AllClose(
at::Tensor tensor,
torch::lazy::LazyTensor& xla_tensor,
double rtol = 1e-5,
double atol = 1e-8) {
EXPECT_TRUE(
CloseValues(tensor, xla_tensor.ToTensor(/*detached=*/false), rtol, atol));
}
static inline void AllEqual(at::Tensor tensor, at::Tensor xla_tensor) {
EXPECT_TRUE(EqualValues(tensor, xla_tensor));
}
void ForEachDevice(const std::function<void(const torch::Device&)>& devfn);
std::string GetTensorTextGraph(at::Tensor tensor);
std::string GetTensorDotGraph(at::Tensor tensor);
std::string GetTensorHloGraph(at::Tensor tensor);
void TestBackward(
const std::vector<torch::Tensor>& inputs,
const torch::Device& device,
const std::function<torch::Tensor(const std::vector<torch::Tensor>&)>&
testfn,
double rtol = 1e-5,
double atol = 1e-8,
int derivative_level = 1);
} // namespace lazy
} // namespace torch