forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevjang.py
131 lines (98 loc) · 3.54 KB
/
evjang.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# Eric Jang originally wrote an implementation of MAML in JAX
# (https://github.com/ericjang/maml-jax).
# We translated his implementation from JAX to PyTorch.
import math
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import torch
from torch.nn import functional as F
mpl.use("Agg")
def net(x, params):
x = F.linear(x, params[0], params[1])
x = F.relu(x)
x = F.linear(x, params[2], params[3])
x = F.relu(x)
x = F.linear(x, params[4], params[5])
return x
params = [
torch.Tensor(40, 1).uniform_(-1.0, 1.0).requires_grad_(),
torch.Tensor(40).zero_().requires_grad_(),
torch.Tensor(40, 40)
.uniform_(-1.0 / math.sqrt(40), 1.0 / math.sqrt(40))
.requires_grad_(),
torch.Tensor(40).zero_().requires_grad_(),
torch.Tensor(1, 40)
.uniform_(-1.0 / math.sqrt(40), 1.0 / math.sqrt(40))
.requires_grad_(),
torch.Tensor(1).zero_().requires_grad_(),
]
opt = torch.optim.Adam(params, lr=1e-3)
alpha = 0.1
K = 20
losses = []
num_tasks = 4
def sample_tasks(outer_batch_size, inner_batch_size):
# Select amplitude and phase for the task
As = []
phases = []
for _ in range(outer_batch_size):
As.append(np.random.uniform(low=0.1, high=0.5))
phases.append(np.random.uniform(low=0.0, high=np.pi))
def get_batch():
xs, ys = [], []
for A, phase in zip(As, phases):
x = np.random.uniform(low=-5.0, high=5.0, size=(inner_batch_size, 1))
y = A * np.sin(x + phase)
xs.append(x)
ys.append(y)
return torch.tensor(xs, dtype=torch.float), torch.tensor(ys, dtype=torch.float)
x1, y1 = get_batch()
x2, y2 = get_batch()
return x1, y1, x2, y2
for it in range(20000):
loss2 = 0.0
opt.zero_grad()
def get_loss_for_task(x1, y1, x2, y2):
f = net(x1, params)
loss = F.mse_loss(f, y1)
# create_graph=True because computing grads here is part of the forward pass.
# We want to differentiate through the SGD update steps and get higher order
# derivatives in the backward pass.
grads = torch.autograd.grad(loss, params, create_graph=True)
new_params = [(params[i] - alpha * grads[i]) for i in range(len(params))]
v_f = net(x2, new_params)
return F.mse_loss(v_f, y2)
task = sample_tasks(num_tasks, K)
inner_losses = [
get_loss_for_task(task[0][i], task[1][i], task[2][i], task[3][i])
for i in range(num_tasks)
]
loss2 = sum(inner_losses) / len(inner_losses)
loss2.backward()
opt.step()
if it % 100 == 0:
print("Iteration %d -- Outer Loss: %.4f" % (it, loss2))
losses.append(loss2.detach())
t_A = torch.tensor(0.0).uniform_(0.1, 0.5)
t_b = torch.tensor(0.0).uniform_(0.0, math.pi)
t_x = torch.empty(4, 1).uniform_(-5, 5)
t_y = t_A * torch.sin(t_x + t_b)
opt.zero_grad()
t_params = params
for k in range(5):
t_f = net(t_x, t_params)
t_loss = F.l1_loss(t_f, t_y)
grads = torch.autograd.grad(t_loss, t_params, create_graph=True)
t_params = [(t_params[i] - alpha * grads[i]) for i in range(len(params))]
test_x = torch.arange(-2 * math.pi, 2 * math.pi, step=0.01).unsqueeze(1)
test_y = t_A * torch.sin(test_x + t_b)
test_f = net(test_x, t_params)
plt.plot(test_x.data.numpy(), test_y.data.numpy(), label="sin(x)")
plt.plot(test_x.data.numpy(), test_f.data.numpy(), label="net(x)")
plt.plot(t_x.data.numpy(), t_y.data.numpy(), "o", label="Examples")
plt.legend()
plt.savefig("maml-sine.png")
plt.figure()
plt.plot(np.convolve(losses, [0.05] * 20))
plt.savefig("losses.png")