forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheager_fusion.py
58 lines (41 loc) · 1.14 KB
/
eager_fusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import time
import torch
import torch.utils
from functorch.compile import aot_function, tvm_compile
a = torch.randn(2000, 1, 4, requires_grad=True)
b = torch.randn(1, 2000, 4)
def f(a):
return (a * b).sum(dim=0)
fw_compiler = tvm_compile(target="llvm", tuning_logfile="fw_keops")
bw_compiler = tvm_compile(target="llvm", tuning_logfile="bw_keops")
compiled_f = aot_function(f, fw_compiler, bw_compiler)
# fw_compiler = lambda x, _: x
# bw_compiler = lambda x, _: x
iters = 10
out = compiled_f(a)
out.sum().backward()
def bench(func):
begin = time.time()
for _ in range(iters):
out = func(a).sin()
out.sum().backward()
a.grad = None
print(time.time() - begin)
def bench_jax():
import jax
import jax.numpy as jnp
jax_a = jnp.array(a.detach().numpy())
jax_b = jnp.array(b.detach().numpy())
def f(a):
return jnp.sin((a * jax_b).sum(axis=[0])).sum()
jit_f = jax.jit(jax.grad(f))
jit_f(jax_a)
begin = time.time()
for _ in range(iters):
out = jit_f(jax_a)
out.block_until_ready()
print(time.time() - begin)
# for
bench(f)
bench(compiled_f)
# bench_jax()