Skip to content

Files

This branch is 8771 commits behind opencv/opencv:master.

dnn

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
Aug 14, 2018
Aug 2, 2018
Jun 4, 2018
Sep 25, 2018
Sep 25, 2018
Nov 16, 2018
Jun 4, 2018
Oct 26, 2018
Nov 16, 2018
Sep 6, 2018
Jan 9, 2019
Nov 16, 2018
Apr 2, 2018
Nov 16, 2018
Nov 16, 2018
Jan 17, 2019
Jan 30, 2019
Jan 30, 2019
Dec 25, 2018
Dec 25, 2018
Oct 13, 2018
Sep 25, 2018
Oct 8, 2017
Aug 15, 2018
Dec 18, 2018
Feb 25, 2019
Jan 18, 2019
Feb 6, 2019
Feb 25, 2019

OpenCV deep learning module samples

Model Zoo

Object detection

Model Scale Size WxH Mean subtraction Channels order
MobileNet-SSD, Caffe 0.00784 (2/255) 300x300 127.5 127.5 127.5 BGR
OpenCV face detector 1.0 300x300 104 177 123 BGR
SSDs from TensorFlow 0.00784 (2/255) 300x300 127.5 127.5 127.5 RGB
YOLO 0.00392 (1/255) 416x416 0 0 0 RGB
VGG16-SSD 1.0 300x300 104 117 123 BGR
Faster-RCNN 1.0 800x600 102.9801 115.9465 122.7717 BGR
R-FCN 1.0 800x600 102.9801 115.9465 122.7717 BGR
Faster-RCNN, ResNet backbone 1.0 300x300 103.939 116.779 123.68 RGB
Faster-RCNN, InceptionV2 backbone 0.00784 (2/255) 300x300 127.5 127.5 127.5 RGB

Face detection

An origin model with single precision floating point weights has been quantized using TensorFlow framework. To achieve the best accuracy run the model on BGR images resized to 300x300 applying mean subtraction of values (104, 177, 123) for each blue, green and red channels correspondingly.

The following are accuracy metrics obtained using COCO object detection evaluation tool on FDDB dataset (see script) applying resize to 300x300 and keeping an origin images' sizes.

AP - Average Precision                            | FP32/FP16 | UINT8          | FP32/FP16 | UINT8          |
AR - Average Recall                               | 300x300   | 300x300        | any size  | any size       |
--------------------------------------------------|-----------|----------------|-----------|----------------|
AP @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] | 0.408     | 0.408          | 0.378     | 0.328 (-0.050) |
AP @[ IoU=0.50      | area=   all | maxDets=100 ] | 0.849     | 0.849          | 0.797     | 0.790 (-0.007) |
AP @[ IoU=0.75      | area=   all | maxDets=100 ] | 0.251     | 0.251          | 0.208     | 0.140 (-0.068) |
AP @[ IoU=0.50:0.95 | area= small | maxDets=100 ] | 0.050     | 0.051 (+0.001) | 0.107     | 0.070 (-0.037) |
AP @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] | 0.381     | 0.379 (-0.002) | 0.380     | 0.368 (-0.012) |
AP @[ IoU=0.50:0.95 | area= large | maxDets=100 ] | 0.455     | 0.455          | 0.412     | 0.337 (-0.075) |
AR @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] | 0.299     | 0.299          | 0.279     | 0.246 (-0.033) |
AR @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] | 0.482     | 0.482          | 0.476     | 0.436 (-0.040) |
AR @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] | 0.496     | 0.496          | 0.491     | 0.451 (-0.040) |
AR @[ IoU=0.50:0.95 | area= small | maxDets=100 ] | 0.189     | 0.193 (+0.004) | 0.284     | 0.232 (-0.052) |
AR @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] | 0.481     | 0.480 (-0.001) | 0.470     | 0.458 (-0.012) |
AR @[ IoU=0.50:0.95 | area= large | maxDets=100 ] | 0.528     | 0.528          | 0.520     | 0.462 (-0.058) |

Classification

Model Scale Size WxH Mean subtraction Channels order
GoogLeNet 1.0 224x224 104 117 123 BGR
SqueezeNet 1.0 227x227 0 0 0 BGR

Semantic segmentation

Model Scale Size WxH Mean subtraction Channels order
ENet 0.00392 (1/255) 1024x512 0 0 0 RGB
FCN8s 1.0 500x500 0 0 0 BGR

References