forked from opencv/opencv
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpyrlk_optical_flow.cpp
331 lines (262 loc) · 9.37 KB
/
pyrlk_optical_flow.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
#include <iostream>
#include <vector>
#include <opencv2/core.hpp>
#include <opencv2/core/utility.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/video.hpp>
#include <opencv2/cudaoptflow.hpp>
#include <opencv2/cudaimgproc.hpp>
#include <opencv2/cudaarithm.hpp>
using namespace std;
using namespace cv;
using namespace cv::cuda;
static void download(const GpuMat& d_mat, vector<Point2f>& vec)
{
vec.resize(d_mat.cols);
Mat mat(1, d_mat.cols, CV_32FC2, (void*)&vec[0]);
d_mat.download(mat);
}
static void download(const GpuMat& d_mat, vector<uchar>& vec)
{
vec.resize(d_mat.cols);
Mat mat(1, d_mat.cols, CV_8UC1, (void*)&vec[0]);
d_mat.download(mat);
}
static void drawArrows(Mat& frame, const vector<Point2f>& prevPts, const vector<Point2f>& nextPts, const vector<uchar>& status, Scalar line_color = Scalar(0, 0, 255))
{
for (size_t i = 0; i < prevPts.size(); ++i)
{
if (status[i])
{
int line_thickness = 1;
Point p = prevPts[i];
Point q = nextPts[i];
double angle = atan2((double) p.y - q.y, (double) p.x - q.x);
double hypotenuse = sqrt( (double)(p.y - q.y)*(p.y - q.y) + (double)(p.x - q.x)*(p.x - q.x) );
if (hypotenuse < 1.0)
continue;
// Here we lengthen the arrow by a factor of three.
q.x = (int) (p.x - 3 * hypotenuse * cos(angle));
q.y = (int) (p.y - 3 * hypotenuse * sin(angle));
// Now we draw the main line of the arrow.
line(frame, p, q, line_color, line_thickness);
// Now draw the tips of the arrow. I do some scaling so that the
// tips look proportional to the main line of the arrow.
p.x = (int) (q.x + 9 * cos(angle + CV_PI / 4));
p.y = (int) (q.y + 9 * sin(angle + CV_PI / 4));
line(frame, p, q, line_color, line_thickness);
p.x = (int) (q.x + 9 * cos(angle - CV_PI / 4));
p.y = (int) (q.y + 9 * sin(angle - CV_PI / 4));
line(frame, p, q, line_color, line_thickness);
}
}
}
inline bool isFlowCorrect(Point2f u)
{
return !cvIsNaN(u.x) && !cvIsNaN(u.y) && fabs(u.x) < 1e9 && fabs(u.y) < 1e9;
}
static Vec3b computeColor(float fx, float fy)
{
static bool first = true;
// relative lengths of color transitions:
// these are chosen based on perceptual similarity
// (e.g. one can distinguish more shades between red and yellow
// than between yellow and green)
const int RY = 15;
const int YG = 6;
const int GC = 4;
const int CB = 11;
const int BM = 13;
const int MR = 6;
const int NCOLS = RY + YG + GC + CB + BM + MR;
static Vec3i colorWheel[NCOLS];
if (first)
{
int k = 0;
for (int i = 0; i < RY; ++i, ++k)
colorWheel[k] = Vec3i(255, 255 * i / RY, 0);
for (int i = 0; i < YG; ++i, ++k)
colorWheel[k] = Vec3i(255 - 255 * i / YG, 255, 0);
for (int i = 0; i < GC; ++i, ++k)
colorWheel[k] = Vec3i(0, 255, 255 * i / GC);
for (int i = 0; i < CB; ++i, ++k)
colorWheel[k] = Vec3i(0, 255 - 255 * i / CB, 255);
for (int i = 0; i < BM; ++i, ++k)
colorWheel[k] = Vec3i(255 * i / BM, 0, 255);
for (int i = 0; i < MR; ++i, ++k)
colorWheel[k] = Vec3i(255, 0, 255 - 255 * i / MR);
first = false;
}
const float rad = sqrt(fx * fx + fy * fy);
const float a = atan2(-fy, -fx) / (float)CV_PI;
const float fk = (a + 1.0f) / 2.0f * (NCOLS - 1);
const int k0 = static_cast<int>(fk);
const int k1 = (k0 + 1) % NCOLS;
const float f = fk - k0;
Vec3b pix;
for (int b = 0; b < 3; b++)
{
const float col0 = colorWheel[k0][b] / 255.0f;
const float col1 = colorWheel[k1][b] / 255.0f;
float col = (1 - f) * col0 + f * col1;
if (rad <= 1)
col = 1 - rad * (1 - col); // increase saturation with radius
else
col *= .75; // out of range
pix[2 - b] = static_cast<uchar>(255.0 * col);
}
return pix;
}
static void drawOpticalFlow(const Mat_<float>& flowx, const Mat_<float>& flowy, Mat& dst, float maxmotion = -1)
{
dst.create(flowx.size(), CV_8UC3);
dst.setTo(Scalar::all(0));
// determine motion range:
float maxrad = maxmotion;
if (maxmotion <= 0)
{
maxrad = 1;
for (int y = 0; y < flowx.rows; ++y)
{
for (int x = 0; x < flowx.cols; ++x)
{
Point2f u(flowx(y, x), flowy(y, x));
if (!isFlowCorrect(u))
continue;
maxrad = max(maxrad, sqrt(u.x * u.x + u.y * u.y));
}
}
}
for (int y = 0; y < flowx.rows; ++y)
{
for (int x = 0; x < flowx.cols; ++x)
{
Point2f u(flowx(y, x), flowy(y, x));
if (isFlowCorrect(u))
dst.at<Vec3b>(y, x) = computeColor(u.x / maxrad, u.y / maxrad);
}
}
}
static void showFlow(const char* name, const GpuMat& d_flow)
{
GpuMat planes[2];
cuda::split(d_flow, planes);
Mat flowx(planes[0]);
Mat flowy(planes[1]);
Mat out;
drawOpticalFlow(flowx, flowy, out, 10);
imshow(name, out);
}
template <typename T> inline T clamp (T x, T a, T b)
{
return ((x) > (a) ? ((x) < (b) ? (x) : (b)) : (a));
}
template <typename T> inline T mapValue(T x, T a, T b, T c, T d)
{
x = clamp(x, a, b);
return c + (d - c) * (x - a) / (b - a);
}
int main(int argc, const char* argv[])
{
const char* keys =
"{ h help | | print help message }"
"{ l left | ../data/pic1.png | specify left image }"
"{ r right | ../data/pic2.png | specify right image }"
"{ flow | sparse | specify flow type [PyrLK] }"
"{ gray | | use grayscale sources [PyrLK Sparse] }"
"{ win_size | 21 | specify windows size [PyrLK] }"
"{ max_level | 3 | specify max level [PyrLK] }"
"{ iters | 30 | specify iterations count [PyrLK] }"
"{ points | 4000 | specify points count [GoodFeatureToTrack] }"
"{ min_dist | 0 | specify minimal distance between points [GoodFeatureToTrack] }";
CommandLineParser cmd(argc, argv, keys);
if (cmd.has("help") || !cmd.check())
{
cmd.printMessage();
cmd.printErrors();
return 0;
}
string fname0 = cmd.get<string>("left");
string fname1 = cmd.get<string>("right");
if (fname0.empty() || fname1.empty())
{
cerr << "Missing input file names" << endl;
return -1;
}
string flow_type = cmd.get<string>("flow");
bool is_sparse = true;
if (flow_type == "sparse")
{
is_sparse = true;
}
else if (flow_type == "dense")
{
is_sparse = false;
}
else
{
cerr << "please specify 'sparse' or 'dense' as flow type" << endl;
return -1;
}
bool useGray = cmd.has("gray");
int winSize = cmd.get<int>("win_size");
int maxLevel = cmd.get<int>("max_level");
int iters = cmd.get<int>("iters");
int points = cmd.get<int>("points");
double minDist = cmd.get<double>("min_dist");
Mat frame0 = imread(fname0);
Mat frame1 = imread(fname1);
if (frame0.empty() || frame1.empty())
{
cout << "Can't load input images" << endl;
return -1;
}
cout << "Image size : " << frame0.cols << " x " << frame0.rows << endl;
cout << "Points count : " << points << endl;
cout << endl;
Mat frame0Gray;
cv::cvtColor(frame0, frame0Gray, COLOR_BGR2GRAY);
Mat frame1Gray;
cv::cvtColor(frame1, frame1Gray, COLOR_BGR2GRAY);
// goodFeaturesToTrack
GpuMat d_frame0Gray(frame0Gray);
GpuMat d_prevPts;
Ptr<cuda::CornersDetector> detector = cuda::createGoodFeaturesToTrackDetector(d_frame0Gray.type(), points, 0.01, minDist);
detector->detect(d_frame0Gray, d_prevPts);
GpuMat d_frame0(frame0);
GpuMat d_frame1(frame1);
GpuMat d_frame1Gray(frame1Gray);
GpuMat d_nextPts;
GpuMat d_status;
GpuMat d_flow(frame0.size(), CV_32FC2);
if (is_sparse)
{
// Sparse
Ptr<cuda::SparsePyrLKOpticalFlow> d_pyrLK_sparse = cuda::SparsePyrLKOpticalFlow::create(
Size(winSize, winSize), maxLevel, iters);
d_pyrLK_sparse->calc(useGray ? d_frame0Gray : d_frame0, useGray ? d_frame1Gray : d_frame1, d_prevPts, d_nextPts, d_status);
// Draw arrows
vector<Point2f> prevPts(d_prevPts.cols);
download(d_prevPts, prevPts);
vector<Point2f> nextPts(d_nextPts.cols);
download(d_nextPts, nextPts);
vector<uchar> status(d_status.cols);
download(d_status, status);
namedWindow("PyrLK [Sparse]", WINDOW_NORMAL);
drawArrows(frame0, prevPts, nextPts, status, Scalar(255, 0, 0));
imshow("PyrLK [Sparse]", frame0);
}
else
{
// Dense
Ptr<cuda::DensePyrLKOpticalFlow> d_pyrLK_dense = cuda::DensePyrLKOpticalFlow::create(
Size(winSize, winSize), maxLevel, iters);
d_pyrLK_dense->calc(d_frame0Gray, d_frame1Gray, d_flow);
// Draw flows
namedWindow("PyrLK [Dense] Flow Field", WINDOW_NORMAL);
showFlow("PyrLK [Dense] Flow Field", d_flow);
}
waitKey(0);
return 0;
}