forked from opencv/opencv
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptical_flow.cpp
240 lines (181 loc) · 6 KB
/
optical_flow.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
#include <iostream>
#include <fstream>
#include "opencv2/core.hpp"
#include <opencv2/core/utility.hpp>
#include "opencv2/highgui.hpp"
#include "opencv2/cudaoptflow.hpp"
#include "opencv2/cudaarithm.hpp"
using namespace std;
using namespace cv;
using namespace cv::cuda;
inline bool isFlowCorrect(Point2f u)
{
return !cvIsNaN(u.x) && !cvIsNaN(u.y) && fabs(u.x) < 1e9 && fabs(u.y) < 1e9;
}
static Vec3b computeColor(float fx, float fy)
{
static bool first = true;
// relative lengths of color transitions:
// these are chosen based on perceptual similarity
// (e.g. one can distinguish more shades between red and yellow
// than between yellow and green)
const int RY = 15;
const int YG = 6;
const int GC = 4;
const int CB = 11;
const int BM = 13;
const int MR = 6;
const int NCOLS = RY + YG + GC + CB + BM + MR;
static Vec3i colorWheel[NCOLS];
if (first)
{
int k = 0;
for (int i = 0; i < RY; ++i, ++k)
colorWheel[k] = Vec3i(255, 255 * i / RY, 0);
for (int i = 0; i < YG; ++i, ++k)
colorWheel[k] = Vec3i(255 - 255 * i / YG, 255, 0);
for (int i = 0; i < GC; ++i, ++k)
colorWheel[k] = Vec3i(0, 255, 255 * i / GC);
for (int i = 0; i < CB; ++i, ++k)
colorWheel[k] = Vec3i(0, 255 - 255 * i / CB, 255);
for (int i = 0; i < BM; ++i, ++k)
colorWheel[k] = Vec3i(255 * i / BM, 0, 255);
for (int i = 0; i < MR; ++i, ++k)
colorWheel[k] = Vec3i(255, 0, 255 - 255 * i / MR);
first = false;
}
const float rad = sqrt(fx * fx + fy * fy);
const float a = atan2(-fy, -fx) / (float) CV_PI;
const float fk = (a + 1.0f) / 2.0f * (NCOLS - 1);
const int k0 = static_cast<int>(fk);
const int k1 = (k0 + 1) % NCOLS;
const float f = fk - k0;
Vec3b pix;
for (int b = 0; b < 3; b++)
{
const float col0 = colorWheel[k0][b] / 255.0f;
const float col1 = colorWheel[k1][b] / 255.0f;
float col = (1 - f) * col0 + f * col1;
if (rad <= 1)
col = 1 - rad * (1 - col); // increase saturation with radius
else
col *= .75; // out of range
pix[2 - b] = static_cast<uchar>(255.0 * col);
}
return pix;
}
static void drawOpticalFlow(const Mat_<float>& flowx, const Mat_<float>& flowy, Mat& dst, float maxmotion = -1)
{
dst.create(flowx.size(), CV_8UC3);
dst.setTo(Scalar::all(0));
// determine motion range:
float maxrad = maxmotion;
if (maxmotion <= 0)
{
maxrad = 1;
for (int y = 0; y < flowx.rows; ++y)
{
for (int x = 0; x < flowx.cols; ++x)
{
Point2f u(flowx(y, x), flowy(y, x));
if (!isFlowCorrect(u))
continue;
maxrad = max(maxrad, sqrt(u.x * u.x + u.y * u.y));
}
}
}
for (int y = 0; y < flowx.rows; ++y)
{
for (int x = 0; x < flowx.cols; ++x)
{
Point2f u(flowx(y, x), flowy(y, x));
if (isFlowCorrect(u))
dst.at<Vec3b>(y, x) = computeColor(u.x / maxrad, u.y / maxrad);
}
}
}
static void showFlow(const char* name, const GpuMat& d_flow)
{
GpuMat planes[2];
cuda::split(d_flow, planes);
Mat flowx(planes[0]);
Mat flowy(planes[1]);
Mat out;
drawOpticalFlow(flowx, flowy, out, 10);
imshow(name, out);
}
int main(int argc, const char* argv[])
{
string filename1, filename2;
if (argc < 3)
{
cerr << "Usage : " << argv[0] << " <frame0> <frame1>" << endl;
filename1 = "../data/basketball1.png";
filename2 = "../data/basketball2.png";
}
else
{
filename1 = argv[1];
filename2 = argv[2];
}
Mat frame0 = imread(filename1, IMREAD_GRAYSCALE);
Mat frame1 = imread(filename2, IMREAD_GRAYSCALE);
if (frame0.empty())
{
cerr << "Can't open image [" << filename1 << "]" << endl;
return -1;
}
if (frame1.empty())
{
cerr << "Can't open image [" << filename2 << "]" << endl;
return -1;
}
if (frame1.size() != frame0.size())
{
cerr << "Images should be of equal sizes" << endl;
return -1;
}
GpuMat d_frame0(frame0);
GpuMat d_frame1(frame1);
GpuMat d_flow(frame0.size(), CV_32FC2);
Ptr<cuda::BroxOpticalFlow> brox = cuda::BroxOpticalFlow::create(0.197f, 50.0f, 0.8f, 10, 77, 10);
Ptr<cuda::DensePyrLKOpticalFlow> lk = cuda::DensePyrLKOpticalFlow::create(Size(7, 7));
Ptr<cuda::FarnebackOpticalFlow> farn = cuda::FarnebackOpticalFlow::create();
Ptr<cuda::OpticalFlowDual_TVL1> tvl1 = cuda::OpticalFlowDual_TVL1::create();
{
GpuMat d_frame0f;
GpuMat d_frame1f;
d_frame0.convertTo(d_frame0f, CV_32F, 1.0 / 255.0);
d_frame1.convertTo(d_frame1f, CV_32F, 1.0 / 255.0);
const int64 start = getTickCount();
brox->calc(d_frame0f, d_frame1f, d_flow);
const double timeSec = (getTickCount() - start) / getTickFrequency();
cout << "Brox : " << timeSec << " sec" << endl;
showFlow("Brox", d_flow);
}
{
const int64 start = getTickCount();
lk->calc(d_frame0, d_frame1, d_flow);
const double timeSec = (getTickCount() - start) / getTickFrequency();
cout << "LK : " << timeSec << " sec" << endl;
showFlow("LK", d_flow);
}
{
const int64 start = getTickCount();
farn->calc(d_frame0, d_frame1, d_flow);
const double timeSec = (getTickCount() - start) / getTickFrequency();
cout << "Farn : " << timeSec << " sec" << endl;
showFlow("Farn", d_flow);
}
{
const int64 start = getTickCount();
tvl1->calc(d_frame0, d_frame1, d_flow);
const double timeSec = (getTickCount() - start) / getTickFrequency();
cout << "TVL1 : " << timeSec << " sec" << endl;
showFlow("TVL1", d_flow);
}
imshow("Frame 0", frame0);
imshow("Frame 1", frame1);
waitKey();
return 0;
}