forked from ocaml/ocaml
-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathparser.mly
1506 lines (1432 loc) · 49.4 KB
/
parser.mly
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/***********************************************************************/
/* */
/* Objective Caml */
/* */
/* Xavier Leroy, projet Cristal, INRIA Rocquencourt */
/* */
/* Copyright 1996 Institut National de Recherche en Informatique et */
/* en Automatique. All rights reserved. This file is distributed */
/* under the terms of the Q Public License version 1.0. */
/* */
/***********************************************************************/
/* $Id$ */
/* The parser definition */
%{
open Location
open Asttypes
open Longident
open Parsetree
let mktyp d =
{ ptyp_desc = d; ptyp_loc = symbol_rloc() }
let mkpat d =
{ ppat_desc = d; ppat_loc = symbol_rloc() }
let mkexp d =
{ pexp_desc = d; pexp_loc = symbol_rloc() }
let mkmty d =
{ pmty_desc = d; pmty_loc = symbol_rloc() }
let mksig d =
{ psig_desc = d; psig_loc = symbol_rloc() }
let mkmod d =
{ pmod_desc = d; pmod_loc = symbol_rloc() }
let mkstr d =
{ pstr_desc = d; pstr_loc = symbol_rloc() }
let mkfield d =
{ pfield_desc = d; pfield_loc = symbol_rloc() }
let mkclass d =
{ pcl_desc = d; pcl_loc = symbol_rloc() }
let mkcty d =
{ pcty_desc = d; pcty_loc = symbol_rloc() }
let reloc_pat x = { x with ppat_loc = symbol_rloc () };;
let reloc_exp x = { x with pexp_loc = symbol_rloc () };;
let mkoperator name pos =
{ pexp_desc = Pexp_ident(Lident name); pexp_loc = rhs_loc pos }
(*
Ghost expressions and patterns:
expressions and patterns that do not appear explicitely in the
source file they have the loc_ghost flag set to true.
Then the profiler will not try to instrument them and the
-stypes option will not try to display their type.
Every grammar rule that generates an element with a location must
make at most one non-ghost element, the topmost one.
How to tell whether your location must be ghost:
A location corresponds to a range of characters in the source file.
If the location contains a piece of code that is syntactically
valid (according to the documentation), and corresponds to the
AST node, then the location must be real; in all other cases,
it must be ghost.
*)
let ghexp d = { pexp_desc = d; pexp_loc = symbol_gloc () };;
let ghpat d = { ppat_desc = d; ppat_loc = symbol_gloc () };;
let ghtyp d = { ptyp_desc = d; ptyp_loc = symbol_gloc () };;
let mkassert e =
match e with
| {pexp_desc = Pexp_construct (Lident "false", None, false) } ->
mkexp (Pexp_assertfalse)
| _ -> mkexp (Pexp_assert (e))
;;
let mkinfix arg1 name arg2 =
mkexp(Pexp_apply(mkoperator name 2, ["", arg1; "", arg2]))
let neg_float_string f =
if String.length f > 0 && f.[0] = '-'
then String.sub f 1 (String.length f - 1)
else "-" ^ f
let mkuminus name arg =
match name, arg.pexp_desc with
| "-", Pexp_constant(Const_int n) ->
mkexp(Pexp_constant(Const_int(-n)))
| "-", Pexp_constant(Const_int32 n) ->
mkexp(Pexp_constant(Const_int32(Int32.neg n)))
| "-", Pexp_constant(Const_int64 n) ->
mkexp(Pexp_constant(Const_int64(Int64.neg n)))
| "-", Pexp_constant(Const_nativeint n) ->
mkexp(Pexp_constant(Const_nativeint(Nativeint.neg n)))
| _, Pexp_constant(Const_float f) ->
mkexp(Pexp_constant(Const_float(neg_float_string f)))
| _ ->
mkexp(Pexp_apply(mkoperator ("~" ^ name) 1, ["", arg]))
let rec mktailexp = function
[] ->
ghexp(Pexp_construct(Lident "[]", None, false))
| e1 :: el ->
let exp_el = mktailexp el in
let l = {loc_start = e1.pexp_loc.loc_start;
loc_end = exp_el.pexp_loc.loc_end;
loc_ghost = true}
in
let arg = {pexp_desc = Pexp_tuple [e1; exp_el]; pexp_loc = l} in
{pexp_desc = Pexp_construct(Lident "::", Some arg, false); pexp_loc = l}
let rec mktailpat = function
[] ->
ghpat(Ppat_construct(Lident "[]", None, false))
| p1 :: pl ->
let pat_pl = mktailpat pl in
let l = {loc_start = p1.ppat_loc.loc_start;
loc_end = pat_pl.ppat_loc.loc_end;
loc_ghost = true}
in
let arg = {ppat_desc = Ppat_tuple [p1; pat_pl]; ppat_loc = l} in
{ppat_desc = Ppat_construct(Lident "::", Some arg, false); ppat_loc = l}
let ghstrexp e =
{ pstr_desc = Pstr_eval e; pstr_loc = {e.pexp_loc with loc_ghost = true} }
let array_function str name =
Ldot(Lident str, (if !Clflags.fast then "unsafe_" ^ name else name))
let rec deep_mkrangepat c1 c2 =
if c1 = c2 then ghpat(Ppat_constant(Const_char c1)) else
ghpat(Ppat_or(ghpat(Ppat_constant(Const_char c1)),
deep_mkrangepat (Char.chr(Char.code c1 + 1)) c2))
let rec mkrangepat c1 c2 =
if c1 > c2 then mkrangepat c2 c1 else
if c1 = c2 then mkpat(Ppat_constant(Const_char c1)) else
reloc_pat (deep_mkrangepat c1 c2)
let syntax_error () =
raise Syntaxerr.Escape_error
let unclosed opening_name opening_num closing_name closing_num =
raise(Syntaxerr.Error(Syntaxerr.Unclosed(rhs_loc opening_num, opening_name,
rhs_loc closing_num, closing_name)))
let bigarray_function str name =
Ldot(Ldot(Lident "Bigarray", str), name)
let bigarray_untuplify = function
{ pexp_desc = Pexp_tuple explist} -> explist
| exp -> [exp]
let bigarray_get arr arg =
match bigarray_untuplify arg with
[c1] ->
mkexp(Pexp_apply(ghexp(Pexp_ident(bigarray_function "Array1" "get")),
["", arr; "", c1]))
| [c1;c2] ->
mkexp(Pexp_apply(ghexp(Pexp_ident(bigarray_function "Array2" "get")),
["", arr; "", c1; "", c2]))
| [c1;c2;c3] ->
mkexp(Pexp_apply(ghexp(Pexp_ident(bigarray_function "Array3" "get")),
["", arr; "", c1; "", c2; "", c3]))
| coords ->
mkexp(Pexp_apply(ghexp(Pexp_ident(bigarray_function "Genarray" "get")),
["", arr; "", ghexp(Pexp_array coords)]))
let bigarray_set arr arg newval =
match bigarray_untuplify arg with
[c1] ->
mkexp(Pexp_apply(ghexp(Pexp_ident(bigarray_function "Array1" "set")),
["", arr; "", c1; "", newval]))
| [c1;c2] ->
mkexp(Pexp_apply(ghexp(Pexp_ident(bigarray_function "Array2" "set")),
["", arr; "", c1; "", c2; "", newval]))
| [c1;c2;c3] ->
mkexp(Pexp_apply(ghexp(Pexp_ident(bigarray_function "Array3" "set")),
["", arr; "", c1; "", c2; "", c3; "", newval]))
| coords ->
mkexp(Pexp_apply(ghexp(Pexp_ident(bigarray_function "Genarray" "set")),
["", arr;
"", ghexp(Pexp_array coords);
"", newval]))
%}
/* Tokens */
%token AMPERAMPER
%token AMPERSAND
%token AND
%token AS
%token ASSERT
%token BACKQUOTE
%token BAR
%token BARBAR
%token BARRBRACKET
%token BEGIN
%token <char> CHAR
%token CLASS
%token COLON
%token COLONCOLON
%token COLONEQUAL
%token COLONGREATER
%token COMMA
%token CONSTRAINT
%token DO
%token DONE
%token DOT
%token DOTDOT
%token DOWNTO
%token ELSE
%token END
%token EOF
%token EQUAL
%token EXCEPTION
%token EXTERNAL
%token FALSE
%token <string> FLOAT
%token FOR
%token FUN
%token FUNCTION
%token FUNCTOR
%token GREATER
%token GREATERRBRACE
%token GREATERRBRACKET
%token IF
%token IN
%token INCLUDE
%token <string> INFIXOP0
%token <string> INFIXOP1
%token <string> INFIXOP2
%token <string> INFIXOP3
%token <string> INFIXOP4
%token INHERIT
%token INITIALIZER
%token <int> INT
%token <int32> INT32
%token <int64> INT64
%token <string> LABEL
%token LAZY
%token LBRACE
%token LBRACELESS
%token LBRACKET
%token LBRACKETBAR
%token LBRACKETLESS
%token LBRACKETGREATER
%token LESS
%token LESSMINUS
%token LET
%token <string> LIDENT
%token LPAREN
%token MATCH
%token METHOD
%token MINUS
%token MINUSDOT
%token MINUSGREATER
%token MODULE
%token MUTABLE
%token <nativeint> NATIVEINT
%token NEW
%token OBJECT
%token OF
%token OPEN
%token <string> OPTLABEL
%token OR
/* %token PARSER */
%token PLUS
%token <string> PREFIXOP
%token PRIVATE
%token QUESTION
%token QUESTIONQUESTION
%token QUOTE
%token RBRACE
%token RBRACKET
%token REC
%token RPAREN
%token SEMI
%token SEMISEMI
%token SHARP
%token SIG
%token STAR
%token <string> STRING
%token STRUCT
%token THEN
%token TILDE
%token TO
%token TRUE
%token TRY
%token TYPE
%token <string> UIDENT
%token UNDERSCORE
%token VAL
%token VIRTUAL
%token WHEN
%token WHILE
%token WITH
/* Precedences and associativities.
Tokens and rules have precedences. A reduce/reduce conflict is resolved
in favor of the first rule (in source file order). A shift/reduce conflict
is resolved by comparing the precedence and associativity of the token to
be shifted with those of the rule to be reduced.
By default, a rule has the precedence of its rightmost terminal (if any).
When there is a shift/reduce conflict between a rule and a token that
have the same precedence, it is resolved using the associativity:
if the token is left-associative, the parser will reduce; if
right-associative, the parser will shift; if non-associative,
the parser will declare a syntax error.
We will only use associativities with operators of the kind x * x -> x
for example, in the rules of the form expr: expr BINOP expr
in all other cases, we define two precedences if needed to resolve
conflicts.
The precedences must be listed from low to high.
*/
%nonassoc IN
%nonassoc below_SEMI
%nonassoc SEMI /* below EQUAL ({lbl=...; lbl=...}) */
%nonassoc LET /* above SEMI ( ...; let ... in ...) */
%nonassoc below_WITH
%nonassoc FUNCTION WITH /* below BAR (match ... with ...) */
%nonassoc AND /* above WITH (module rec A: SIG with ... and ...) */
%nonassoc THEN /* below ELSE (if ... then ...) */
%nonassoc ELSE /* (if ... then ... else ...) */
%nonassoc LESSMINUS /* below COLONEQUAL (lbl <- x := e) */
%right COLONEQUAL /* expr (e := e := e) */
%nonassoc AS
%left BAR /* pattern (p|p|p) */
%nonassoc below_COMMA
%left COMMA /* expr/expr_comma_list (e,e,e) */
%right MINUSGREATER /* core_type2 (t -> t -> t) */
%right OR BARBAR /* expr (e || e || e) */
%right AMPERSAND AMPERAMPER /* expr (e && e && e) */
%nonassoc below_EQUAL
%left INFIXOP0 EQUAL LESS GREATER /* expr (e OP e OP e) */
%right INFIXOP1 /* expr (e OP e OP e) */
%right COLONCOLON /* expr (e :: e :: e) */
%left INFIXOP2 PLUS MINUS MINUSDOT /* expr (e OP e OP e) */
%left INFIXOP3 STAR /* expr (e OP e OP e) */
%right INFIXOP4 /* expr (e OP e OP e) */
%nonassoc prec_unary_minus /* unary - */
%nonassoc prec_constant_constructor /* cf. simple_expr (C versus C x) */
%nonassoc prec_constr_appl /* above AS BAR COLONCOLON COMMA */
%nonassoc below_SHARP
%nonassoc SHARP /* simple_expr/toplevel_directive */
%nonassoc below_DOT
%nonassoc DOT
/* Finally, the first tokens of simple_expr are above everything else. */
%nonassoc BACKQUOTE BEGIN CHAR FALSE FLOAT INT INT32 INT64
LBRACE LBRACELESS LBRACKET LBRACKETBAR LIDENT LPAREN
NEW NATIVEINT PREFIXOP STRING TRUE UIDENT
/* Entry points */
%start implementation /* for implementation files */
%type <Parsetree.structure> implementation
%start interface /* for interface files */
%type <Parsetree.signature> interface
%start toplevel_phrase /* for interactive use */
%type <Parsetree.toplevel_phrase> toplevel_phrase
%start use_file /* for the #use directive */
%type <Parsetree.toplevel_phrase list> use_file
%%
/* Entry points */
implementation:
structure EOF { $1 }
;
interface:
signature EOF { List.rev $1 }
;
toplevel_phrase:
top_structure SEMISEMI { Ptop_def $1 }
| seq_expr SEMISEMI { Ptop_def[ghstrexp $1] }
| toplevel_directive SEMISEMI { $1 }
| EOF { raise End_of_file }
;
top_structure:
structure_item { [$1] }
| structure_item top_structure { $1 :: $2 }
;
use_file:
use_file_tail { $1 }
| seq_expr use_file_tail { Ptop_def[ghstrexp $1] :: $2 }
;
use_file_tail:
EOF { [] }
| SEMISEMI EOF { [] }
| SEMISEMI seq_expr use_file_tail { Ptop_def[ghstrexp $2] :: $3 }
| SEMISEMI structure_item use_file_tail { Ptop_def[$2] :: $3 }
| SEMISEMI toplevel_directive use_file_tail { $2 :: $3 }
| structure_item use_file_tail { Ptop_def[$1] :: $2 }
| toplevel_directive use_file_tail { $1 :: $2 }
;
/* Module expressions */
module_expr:
mod_longident
{ mkmod(Pmod_ident $1) }
| STRUCT structure END
{ mkmod(Pmod_structure($2)) }
| STRUCT structure error
{ unclosed "struct" 1 "end" 3 }
| FUNCTOR LPAREN UIDENT COLON module_type RPAREN MINUSGREATER module_expr
{ mkmod(Pmod_functor($3, $5, $8)) }
| module_expr LPAREN module_expr RPAREN
{ mkmod(Pmod_apply($1, $3)) }
| module_expr LPAREN module_expr error
{ unclosed "(" 2 ")" 4 }
| LPAREN module_expr COLON module_type RPAREN
{ mkmod(Pmod_constraint($2, $4)) }
| LPAREN module_expr COLON module_type error
{ unclosed "(" 1 ")" 5 }
| LPAREN module_expr RPAREN
{ $2 }
| LPAREN module_expr error
{ unclosed "(" 1 ")" 3 }
;
structure:
structure_tail { $1 }
| seq_expr structure_tail { ghstrexp $1 :: $2 }
;
structure_tail:
/* empty */ { [] }
| SEMISEMI { [] }
| SEMISEMI seq_expr structure_tail { ghstrexp $2 :: $3 }
| SEMISEMI structure_item structure_tail { $2 :: $3 }
| structure_item structure_tail { $1 :: $2 }
;
structure_item:
LET rec_flag let_bindings
{ match $3 with
[{ppat_desc = Ppat_any}, exp] -> mkstr(Pstr_eval exp)
| _ -> mkstr(Pstr_value($2, List.rev $3)) }
| EXTERNAL val_ident_colon core_type EQUAL primitive_declaration
{ mkstr(Pstr_primitive($2, {pval_type = $3; pval_prim = $5})) }
| TYPE type_declarations
{ mkstr(Pstr_type(List.rev $2)) }
| EXCEPTION UIDENT constructor_arguments
{ mkstr(Pstr_exception($2, $3)) }
| EXCEPTION UIDENT EQUAL constr_longident
{ mkstr(Pstr_exn_rebind($2, $4)) }
| MODULE UIDENT module_binding
{ mkstr(Pstr_module($2, $3)) }
| MODULE REC module_rec_bindings
{ mkstr(Pstr_recmodule(List.rev $3)) }
| MODULE TYPE ident EQUAL module_type
{ mkstr(Pstr_modtype($3, $5)) }
| OPEN mod_longident
{ mkstr(Pstr_open $2) }
| CLASS class_declarations
{ mkstr(Pstr_class (List.rev $2)) }
| CLASS TYPE class_type_declarations
{ mkstr(Pstr_class_type (List.rev $3)) }
| INCLUDE module_expr
{ mkstr(Pstr_include $2) }
;
module_binding:
EQUAL module_expr
{ $2 }
| COLON module_type EQUAL module_expr
{ mkmod(Pmod_constraint($4, $2)) }
| LPAREN UIDENT COLON module_type RPAREN module_binding
{ mkmod(Pmod_functor($2, $4, $6)) }
;
module_rec_bindings:
module_rec_binding { [$1] }
| module_rec_bindings AND module_rec_binding { $3 :: $1 }
;
module_rec_binding:
UIDENT COLON module_type EQUAL module_expr { ($1, $3, $5) }
;
/* Module types */
module_type:
mty_longident
{ mkmty(Pmty_ident $1) }
| SIG signature END
{ mkmty(Pmty_signature(List.rev $2)) }
| SIG signature error
{ unclosed "sig" 1 "end" 3 }
| FUNCTOR LPAREN UIDENT COLON module_type RPAREN MINUSGREATER module_type
%prec below_WITH
{ mkmty(Pmty_functor($3, $5, $8)) }
| module_type WITH with_constraints
{ mkmty(Pmty_with($1, List.rev $3)) }
| LPAREN module_type RPAREN
{ $2 }
| LPAREN module_type error
{ unclosed "(" 1 ")" 3 }
;
signature:
/* empty */ { [] }
| signature signature_item { $2 :: $1 }
| signature signature_item SEMISEMI { $2 :: $1 }
;
signature_item:
VAL val_ident_colon core_type
{ mksig(Psig_value($2, {pval_type = $3; pval_prim = []})) }
| EXTERNAL val_ident_colon core_type EQUAL primitive_declaration
{ mksig(Psig_value($2, {pval_type = $3; pval_prim = $5})) }
| TYPE type_declarations
{ mksig(Psig_type(List.rev $2)) }
| EXCEPTION UIDENT constructor_arguments
{ mksig(Psig_exception($2, $3)) }
| MODULE UIDENT module_declaration
{ mksig(Psig_module($2, $3)) }
| MODULE REC module_rec_declarations
{ mksig(Psig_recmodule(List.rev $3)) }
| MODULE TYPE ident
{ mksig(Psig_modtype($3, Pmodtype_abstract)) }
| MODULE TYPE ident EQUAL module_type
{ mksig(Psig_modtype($3, Pmodtype_manifest $5)) }
| OPEN mod_longident
{ mksig(Psig_open $2) }
| INCLUDE module_type
{ mksig(Psig_include $2) }
| CLASS class_descriptions
{ mksig(Psig_class (List.rev $2)) }
| CLASS TYPE class_type_declarations
{ mksig(Psig_class_type (List.rev $3)) }
;
module_declaration:
COLON module_type
{ $2 }
| LPAREN UIDENT COLON module_type RPAREN module_declaration
{ mkmty(Pmty_functor($2, $4, $6)) }
;
module_rec_declarations:
module_rec_declaration { [$1] }
| module_rec_declarations AND module_rec_declaration { $3 :: $1 }
;
module_rec_declaration:
UIDENT COLON module_type { ($1, $3) }
;
/* Class expressions */
class_declarations:
class_declarations AND class_declaration { $3 :: $1 }
| class_declaration { [$1] }
;
class_declaration:
virtual_flag class_type_parameters LIDENT class_fun_binding
{ let params, variance = List.split (fst $2) in
{pci_virt = $1; pci_params = params, snd $2;
pci_name = $3; pci_expr = $4; pci_variance = variance;
pci_loc = symbol_rloc ()} }
;
class_fun_binding:
EQUAL class_expr
{ $2 }
| COLON class_type EQUAL class_expr
{ mkclass(Pcl_constraint($4, $2)) }
| labeled_simple_pattern class_fun_binding
{ let (l,o,p) = $1 in mkclass(Pcl_fun(l, o, p, $2)) }
;
class_type_parameters:
/*empty*/ { [], symbol_gloc () }
| LBRACKET type_parameter_list RBRACKET { List.rev $2, symbol_rloc () }
;
class_fun_def:
labeled_simple_pattern MINUSGREATER class_expr
{ let (l,o,p) = $1 in mkclass(Pcl_fun(l, o, p, $3)) }
| labeled_simple_pattern class_fun_def
{ let (l,o,p) = $1 in mkclass(Pcl_fun(l, o, p, $2)) }
;
class_expr:
class_simple_expr
{ $1 }
| FUN class_fun_def
{ $2 }
| class_simple_expr simple_labeled_expr_list
{ mkclass(Pcl_apply($1, List.rev $2)) }
| LET rec_flag let_bindings IN class_expr
{ mkclass(Pcl_let ($2, List.rev $3, $5)) }
;
class_simple_expr:
LBRACKET core_type_comma_list RBRACKET class_longident
{ mkclass(Pcl_constr($4, List.rev $2)) }
| class_longident
{ mkclass(Pcl_constr($1, [])) }
| OBJECT class_structure END
{ mkclass(Pcl_structure($2)) }
| OBJECT class_structure error
{ unclosed "object" 1 "end" 3 }
| LPAREN class_expr COLON class_type RPAREN
{ mkclass(Pcl_constraint($2, $4)) }
| LPAREN class_expr COLON class_type error
{ unclosed "(" 1 ")" 5 }
| LPAREN class_expr RPAREN
{ $2 }
| LPAREN class_expr error
{ unclosed "(" 1 ")" 3 }
;
class_structure:
class_self_pattern class_fields
{ $1, List.rev $2 }
;
class_self_pattern:
LPAREN pattern RPAREN
{ reloc_pat $2 }
| LPAREN pattern COLON core_type RPAREN
{ mkpat(Ppat_constraint($2, $4)) }
| /* empty */
{ ghpat(Ppat_any) }
;
class_fields:
/* empty */
{ [] }
| class_fields INHERIT class_expr parent_binder
{ Pcf_inher ($3, $4) :: $1 }
| class_fields VAL value
{ Pcf_val $3 :: $1 }
| class_fields virtual_method
{ Pcf_virt $2 :: $1 }
| class_fields concrete_method
{ Pcf_meth $2 :: $1 }
| class_fields CONSTRAINT constrain
{ Pcf_cstr $3 :: $1 }
| class_fields INITIALIZER seq_expr
{ Pcf_init $3 :: $1 }
;
parent_binder:
AS LIDENT
{ Some $2 }
| /* empty */
{None}
;
value:
mutable_flag label EQUAL seq_expr
{ $2, $1, $4, symbol_rloc () }
| mutable_flag label type_constraint EQUAL seq_expr
{ $2, $1, (let (t, t') = $3 in ghexp(Pexp_constraint($5, t, t'))),
symbol_rloc () }
;
virtual_method:
METHOD PRIVATE VIRTUAL label COLON poly_type
{ $4, Private, $6, symbol_rloc () }
| METHOD VIRTUAL private_flag label COLON poly_type
{ $4, $3, $6, symbol_rloc () }
;
concrete_method :
METHOD private_flag label strict_binding
{ $3, $2, ghexp(Pexp_poly ($4, None)), symbol_rloc () }
| METHOD private_flag label COLON poly_type EQUAL seq_expr
{ $3, $2, ghexp(Pexp_poly($7,Some $5)), symbol_rloc () }
| METHOD private_flag LABEL poly_type EQUAL seq_expr
{ $3, $2, ghexp(Pexp_poly($6,Some $4)), symbol_rloc () }
;
/* Class types */
class_type:
class_signature
{ $1 }
| QUESTION LIDENT COLON simple_core_type_or_tuple MINUSGREATER class_type
{ mkcty(Pcty_fun("?" ^ $2 ,
{ptyp_desc = Ptyp_constr(Lident "option", [$4]);
ptyp_loc = $4.ptyp_loc},
$6)) }
| OPTLABEL simple_core_type_or_tuple MINUSGREATER class_type
{ mkcty(Pcty_fun("?" ^ $1 ,
{ptyp_desc = Ptyp_constr(Lident "option", [$2]);
ptyp_loc = $2.ptyp_loc},
$4)) }
| LIDENT COLON simple_core_type_or_tuple MINUSGREATER class_type
{ mkcty(Pcty_fun($1, $3, $5)) }
| simple_core_type_or_tuple MINUSGREATER class_type
{ mkcty(Pcty_fun("", $1, $3)) }
;
class_signature:
LBRACKET core_type_comma_list RBRACKET clty_longident
{ mkcty(Pcty_constr ($4, List.rev $2)) }
| clty_longident
{ mkcty(Pcty_constr ($1, [])) }
| OBJECT class_sig_body END
{ mkcty(Pcty_signature $2) }
| OBJECT class_sig_body error
{ unclosed "object" 1 "end" 3 }
;
class_sig_body:
class_self_type class_sig_fields
{ $1, List.rev $2 }
;
class_self_type:
LPAREN core_type RPAREN
{ $2 }
| /* empty */
{ mktyp(Ptyp_any) }
;
class_sig_fields:
/* empty */ { [] }
| class_sig_fields INHERIT class_signature { Pctf_inher $3 :: $1 }
| class_sig_fields VAL value_type { Pctf_val $3 :: $1 }
| class_sig_fields virtual_method { Pctf_virt $2 :: $1 }
| class_sig_fields method_type { Pctf_meth $2 :: $1 }
| class_sig_fields CONSTRAINT constrain { Pctf_cstr $3 :: $1 }
;
value_type:
mutable_flag label COLON core_type
{ $2, $1, Some $4, symbol_rloc () }
;
method_type:
METHOD private_flag label COLON poly_type
{ $3, $2, $5, symbol_rloc () }
;
constrain:
core_type EQUAL core_type { $1, $3, symbol_rloc () }
;
class_descriptions:
class_descriptions AND class_description { $3 :: $1 }
| class_description { [$1] }
;
class_description:
virtual_flag class_type_parameters LIDENT COLON class_type
{ let params, variance = List.split (fst $2) in
{pci_virt = $1; pci_params = params, snd $2;
pci_name = $3; pci_expr = $5; pci_variance = variance;
pci_loc = symbol_rloc ()} }
;
class_type_declarations:
class_type_declarations AND class_type_declaration { $3 :: $1 }
| class_type_declaration { [$1] }
;
class_type_declaration:
virtual_flag class_type_parameters LIDENT EQUAL class_signature
{ let params, variance = List.split (fst $2) in
{pci_virt = $1; pci_params = params, snd $2;
pci_name = $3; pci_expr = $5; pci_variance = variance;
pci_loc = symbol_rloc ()} }
;
/* Core expressions */
seq_expr:
| expr %prec below_SEMI { $1 }
| expr SEMI { reloc_exp $1 }
| expr SEMI seq_expr { mkexp(Pexp_sequence($1, $3)) }
;
labeled_simple_pattern:
QUESTION LPAREN label_let_pattern opt_default RPAREN
{ ("?" ^ fst $3, $4, snd $3) }
| QUESTION label_var
{ ("?" ^ fst $2, None, snd $2) }
| OPTLABEL LPAREN let_pattern opt_default RPAREN
{ ("?" ^ $1, $4, $3) }
| OPTLABEL pattern_var
{ ("?" ^ $1, None, $2) }
| TILDE LPAREN label_let_pattern RPAREN
{ (fst $3, None, snd $3) }
| TILDE label_var
{ (fst $2, None, snd $2) }
| LABEL simple_pattern
{ ($1, None, $2) }
| simple_pattern
{ ("", None, $1) }
;
pattern_var:
LIDENT { mkpat(Ppat_var $1) }
;
opt_default:
/* empty */ { None }
| EQUAL seq_expr { Some $2 }
;
label_let_pattern:
label_var
{ $1 }
| label_var COLON core_type
{ let (lab, pat) = $1 in (lab, mkpat(Ppat_constraint(pat, $3))) }
;
label_var:
LIDENT { ($1, mkpat(Ppat_var $1)) }
;
let_pattern:
pattern
{ $1 }
| pattern COLON core_type
{ mkpat(Ppat_constraint($1, $3)) }
;
expr:
simple_expr %prec below_SHARP
{ $1 }
| simple_expr simple_labeled_expr_list
{ mkexp(Pexp_apply($1, List.rev $2)) }
| LET rec_flag let_bindings IN seq_expr
{ mkexp(Pexp_let($2, List.rev $3, $5)) }
| LET MODULE UIDENT module_binding IN seq_expr
{ mkexp(Pexp_letmodule($3, $4, $6)) }
| FUNCTION opt_bar match_cases
{ mkexp(Pexp_function("", None, List.rev $3)) }
| FUN labeled_simple_pattern fun_def
{ let (l,o,p) = $2 in mkexp(Pexp_function(l, o, [p, $3])) }
| MATCH seq_expr WITH opt_bar match_cases
{ mkexp(Pexp_match($2, List.rev $5)) }
| TRY seq_expr WITH opt_bar match_cases
{ mkexp(Pexp_try($2, List.rev $5)) }
| TRY seq_expr WITH error
{ syntax_error() }
| expr_comma_list %prec below_COMMA
{ mkexp(Pexp_tuple(List.rev $1)) }
| constr_longident simple_expr %prec below_SHARP
{ mkexp(Pexp_construct($1, Some $2, false)) }
| name_tag simple_expr %prec below_SHARP
{ mkexp(Pexp_variant($1, Some $2)) }
| IF seq_expr THEN expr ELSE expr
{ mkexp(Pexp_ifthenelse($2, $4, Some $6)) }
| IF seq_expr THEN expr
{ mkexp(Pexp_ifthenelse($2, $4, None)) }
| WHILE seq_expr DO seq_expr DONE
{ mkexp(Pexp_while($2, $4)) }
| FOR val_ident EQUAL seq_expr direction_flag seq_expr DO seq_expr DONE
{ mkexp(Pexp_for($2, $4, $6, $5, $8)) }
| expr COLONCOLON expr
{ mkexp(Pexp_construct(Lident "::",
Some(ghexp(Pexp_tuple[$1;$3])),
false)) }
| expr INFIXOP0 expr
{ mkinfix $1 $2 $3 }
| expr INFIXOP1 expr
{ mkinfix $1 $2 $3 }
| expr INFIXOP2 expr
{ mkinfix $1 $2 $3 }
| expr INFIXOP3 expr
{ mkinfix $1 $2 $3 }
| expr INFIXOP4 expr
{ mkinfix $1 $2 $3 }
| expr PLUS expr
{ mkinfix $1 "+" $3 }
| expr MINUS expr
{ mkinfix $1 "-" $3 }
| expr MINUSDOT expr
{ mkinfix $1 "-." $3 }
| expr STAR expr
{ mkinfix $1 "*" $3 }
| expr EQUAL expr
{ mkinfix $1 "=" $3 }
| expr LESS expr
{ mkinfix $1 "<" $3 }
| expr GREATER expr
{ mkinfix $1 ">" $3 }
| expr OR expr
{ mkinfix $1 "or" $3 }
| expr BARBAR expr
{ mkinfix $1 "||" $3 }
| expr AMPERSAND expr
{ mkinfix $1 "&" $3 }
| expr AMPERAMPER expr
{ mkinfix $1 "&&" $3 }
| expr COLONEQUAL expr
{ mkinfix $1 ":=" $3 }
| subtractive expr %prec prec_unary_minus
{ mkuminus $1 $2 }
| simple_expr DOT label_longident LESSMINUS expr
{ mkexp(Pexp_setfield($1, $3, $5)) }
| simple_expr DOT LPAREN seq_expr RPAREN LESSMINUS expr
{ mkexp(Pexp_apply(ghexp(Pexp_ident(array_function "Array" "set")),
["",$1; "",$4; "",$7])) }
| simple_expr DOT LBRACKET seq_expr RBRACKET LESSMINUS expr
{ mkexp(Pexp_apply(ghexp(Pexp_ident(array_function "String" "set")),
["",$1; "",$4; "",$7])) }
| simple_expr DOT LBRACE expr RBRACE LESSMINUS expr
{ bigarray_set $1 $4 $7 }
| label LESSMINUS expr
{ mkexp(Pexp_setinstvar($1, $3)) }
| ASSERT simple_expr %prec below_SHARP
{ mkassert $2 }
| LAZY simple_expr %prec below_SHARP
{ mkexp (Pexp_lazy ($2)) }
| OBJECT class_structure END
{ mkexp (Pexp_object($2)) }
| OBJECT class_structure error
{ unclosed "object" 1 "end" 3 }
;
simple_expr:
val_longident
{ mkexp(Pexp_ident $1) }
| constant
{ mkexp(Pexp_constant $1) }
| constr_longident %prec prec_constant_constructor
{ mkexp(Pexp_construct($1, None, false)) }
| name_tag %prec prec_constant_constructor
{ mkexp(Pexp_variant($1, None)) }
| LPAREN seq_expr RPAREN
{ reloc_exp $2 }
| LPAREN seq_expr error
{ unclosed "(" 1 ")" 3 }
| BEGIN seq_expr END
{ reloc_exp $2 }
| BEGIN END
{ mkexp (Pexp_construct (Lident "()", None, false)) }
| BEGIN seq_expr error
{ unclosed "begin" 1 "end" 3 }
| LPAREN seq_expr type_constraint RPAREN
{ let (t, t') = $3 in mkexp(Pexp_constraint($2, t, t')) }
| simple_expr DOT label_longident
{ mkexp(Pexp_field($1, $3)) }
| simple_expr DOT LPAREN seq_expr RPAREN
{ mkexp(Pexp_apply(ghexp(Pexp_ident(array_function "Array" "get")),
["",$1; "",$4])) }
| simple_expr DOT LPAREN seq_expr error
{ unclosed "(" 3 ")" 5 }
| simple_expr DOT LBRACKET seq_expr RBRACKET
{ mkexp(Pexp_apply(ghexp(Pexp_ident(array_function "String" "get")),
["",$1; "",$4])) }
| simple_expr DOT LBRACKET seq_expr error
{ unclosed "[" 3 "]" 5 }
| simple_expr DOT LBRACE expr RBRACE
{ bigarray_get $1 $4 }
| simple_expr DOT LBRACE expr_comma_list error
{ unclosed "{" 3 "}" 5 }
| LBRACE record_expr RBRACE
{ let (exten, fields) = $2 in mkexp(Pexp_record(fields, exten)) }
| LBRACE record_expr error
{ unclosed "{" 1 "}" 3 }
| LBRACKETBAR expr_semi_list opt_semi BARRBRACKET
{ mkexp(Pexp_array(List.rev $2)) }
| LBRACKETBAR expr_semi_list opt_semi error
{ unclosed "[|" 1 "|]" 4 }
| LBRACKETBAR BARRBRACKET
{ mkexp(Pexp_array []) }
| LBRACKET expr_semi_list opt_semi RBRACKET
{ reloc_exp (mktailexp (List.rev $2)) }
| LBRACKET expr_semi_list opt_semi error
{ unclosed "[" 1 "]" 4 }
| PREFIXOP simple_expr
{ mkexp(Pexp_apply(mkoperator $1 1, ["",$2])) }
| NEW class_longident
{ mkexp(Pexp_new($2)) }
| LBRACELESS field_expr_list opt_semi GREATERRBRACE
{ mkexp(Pexp_override(List.rev $2)) }
| LBRACELESS field_expr_list opt_semi error
{ unclosed "{<" 1 ">}" 4 }
| LBRACELESS GREATERRBRACE
{ mkexp(Pexp_override []) }
| simple_expr SHARP label
{ mkexp(Pexp_send($1, $3)) }
;
simple_labeled_expr_list:
labeled_simple_expr
{ [$1] }
| simple_labeled_expr_list labeled_simple_expr
{ $2 :: $1 }
;
labeled_simple_expr:
simple_expr %prec below_SHARP
{ ("", $1) }
| label_expr
{ $1 }
;
label_expr:
LABEL simple_expr %prec below_SHARP
{ ($1, $2) }
| TILDE label_ident
{ $2 }
| QUESTION label_ident
{ ("?" ^ fst $2, snd $2) }
| OPTLABEL simple_expr %prec below_SHARP
{ ("?" ^ $1, $2) }
;
label_ident:
LIDENT { ($1, mkexp(Pexp_ident(Lident $1))) }
;
let_bindings:
let_binding { [$1] }
| let_bindings AND let_binding { $3 :: $1 }
;
let_binding:
val_ident fun_binding
{ ({ppat_desc = Ppat_var $1; ppat_loc = rhs_loc 1}, $2) }
| pattern EQUAL seq_expr
{ ($1, $3) }
;
fun_binding:
strict_binding
{ $1 }
| type_constraint EQUAL seq_expr
{ let (t, t') = $1 in ghexp(Pexp_constraint($3, t, t')) }
;
strict_binding:
EQUAL seq_expr
{ $2 }
| labeled_simple_pattern fun_binding
{ let (l, o, p) = $1 in ghexp(Pexp_function(l, o, [p, $2])) }
;
match_cases:
pattern match_action { [$1, $2] }