|
| 1 | +package main |
| 2 | + |
| 3 | +import ( |
| 4 | + "fmt" |
| 5 | + "math" |
| 6 | + "math/rand" |
| 7 | + "os" |
| 8 | + "text/tabwriter" |
| 9 | + |
| 10 | + "github.com/gocarina/gocsv" |
| 11 | + "github.com/goml/gobrain" |
| 12 | + "github.com/spf13/cobra" |
| 13 | + |
| 14 | + "github.com/coder/flog" |
| 15 | +) |
| 16 | + |
| 17 | +type vector [][]float64 |
| 18 | + |
| 19 | +type pattern []vector |
| 20 | + |
| 21 | +func (p pattern) floats() [][][]float64 { |
| 22 | + var r [][][]float64 |
| 23 | + for _, v := range p { |
| 24 | + r = append(r, [][]float64(v)) |
| 25 | + } |
| 26 | + return r |
| 27 | +} |
| 28 | + |
| 29 | +func vectorizeTrainingRows(rs []trainingRow) pattern { |
| 30 | + var p pattern |
| 31 | + for _, r := range rs { |
| 32 | + p = append(p, r.vectorize()) |
| 33 | + } |
| 34 | + return p |
| 35 | +} |
| 36 | + |
| 37 | +func splitTrainTest(rat float64, p pattern) (train, test pattern) { |
| 38 | + perms := rand.Perm(len(p)) |
| 39 | + for i, v := range p { |
| 40 | + if float64(perms[i])/float64(len(p)) > rat { |
| 41 | + test = append(test, v) |
| 42 | + } else { |
| 43 | + train = append(train, v) |
| 44 | + } |
| 45 | + } |
| 46 | + return train, test |
| 47 | +} |
| 48 | + |
| 49 | +func train() *cobra.Command { |
| 50 | + return &cobra.Command{ |
| 51 | + Use: "train", |
| 52 | + RunE: func(cmd *cobra.Command, _ []string) error { |
| 53 | + var rs []trainingRow |
| 54 | + |
| 55 | + err := gocsv.Unmarshal(os.Stdin, &rs) |
| 56 | + if err != nil { |
| 57 | + return err |
| 58 | + } |
| 59 | + |
| 60 | + all := vectorizeTrainingRows(rs) |
| 61 | + |
| 62 | + train, test := splitTrainTest(0.5, all) |
| 63 | + |
| 64 | + flog.Info("split train test: %v/%v", len(train), len(test)) |
| 65 | + |
| 66 | + ff := &gobrain.FeedForward{} |
| 67 | + ff.Init(2, 2, 1) |
| 68 | + ff.Train(train.floats(), 50, 0.001, 0.4, true) |
| 69 | + var ( |
| 70 | + // confusionMatrix has actual values in the first index with |
| 71 | + // predicted values in the second. |
| 72 | + confusionMatrix [2][2]int |
| 73 | + ) |
| 74 | + for _, v := range train { |
| 75 | + want := v[1][0] |
| 76 | + gotArr := ff.Update(v[0]) |
| 77 | + got := gotArr[0] |
| 78 | + confusionMatrix[0][int(math.Round(want))]++ |
| 79 | + confusionMatrix[1][int(math.Round(got))]++ |
| 80 | + } |
| 81 | + twr := tabwriter.NewWriter(os.Stderr, 0, 4, 3, ' ', 0) |
| 82 | + _, _ = fmt.Fprintf(twr, "-\tOff\tOn\n") |
| 83 | + _, _ = fmt.Fprintf(twr, "Actual\t%v\t%v\n", confusionMatrix[0][0], confusionMatrix[0][1]) |
| 84 | + _, _ = fmt.Fprintf(twr, "Predicted\t%v\t%v\n", confusionMatrix[1][0], confusionMatrix[1][1]) |
| 85 | + twr.Flush() |
| 86 | + return nil |
| 87 | + }, |
| 88 | + } |
| 89 | +} |
0 commit comments