|
| 1 | +# general settings |
| 2 | +name: 100_train_ECBSR_x4_m4c16_prelu_RGB |
| 3 | +model_type: SRModel |
| 4 | +scale: 4 |
| 5 | +num_gpu: 1 # set num_gpu: 0 for cpu mode |
| 6 | +manual_seed: 0 |
| 7 | + |
| 8 | +# dataset and data loader settings |
| 9 | +datasets: |
| 10 | + train: |
| 11 | + name: DIV2K |
| 12 | + type: PairedImageDataset |
| 13 | + # It is strongly recommended to use lmdb for faster IO speed, especially for small networks |
| 14 | + dataroot_gt: datasets/DF2K/DIV2K_train_HR_sub.lmdb |
| 15 | + dataroot_lq: datasets/DF2K/DIV2K_train_LR_bicubic_X4_sub.lmdb |
| 16 | + meta_info_file: basicsr/data/meta_info/meta_info_DIV2K800sub_GT.txt |
| 17 | + filename_tmpl: '{}' |
| 18 | + io_backend: |
| 19 | + type: lmdb |
| 20 | + |
| 21 | + gt_size: 256 |
| 22 | + use_flip: true |
| 23 | + use_rot: true |
| 24 | + |
| 25 | + # data loader |
| 26 | + use_shuffle: true |
| 27 | + num_worker_per_gpu: 12 |
| 28 | + batch_size_per_gpu: 32 |
| 29 | + dataset_enlarge_ratio: 10 |
| 30 | + prefetch_mode: ~ |
| 31 | + |
| 32 | + # we use multiple validation datasets. The SR benchmark datasets can be download from: https://cv.snu.ac.kr/research/EDSR/benchmark.tar |
| 33 | + val: |
| 34 | + name: Set5 |
| 35 | + type: PairedImageDataset |
| 36 | + dataroot_gt: datasets/benchmark/Set5/HR |
| 37 | + dataroot_lq: datasets/benchmark/Set5/LR_bicubic/X4 |
| 38 | + filename_tmpl: '{}x4' |
| 39 | + io_backend: |
| 40 | + type: disk |
| 41 | + |
| 42 | + val_2: |
| 43 | + name: Set14 |
| 44 | + type: PairedImageDataset |
| 45 | + dataroot_gt: datasets/benchmark/Set14/HR |
| 46 | + dataroot_lq: datasets/benchmark/Set14/LR_bicubic/X4 |
| 47 | + filename_tmpl: '{}x4' |
| 48 | + io_backend: |
| 49 | + type: disk |
| 50 | + |
| 51 | + val_3: |
| 52 | + name: B100 |
| 53 | + type: PairedImageDataset |
| 54 | + dataroot_gt: datasets/benchmark/B100/HR |
| 55 | + dataroot_lq: datasets/benchmark/B100/LR_bicubic/X4 |
| 56 | + filename_tmpl: '{}x4' |
| 57 | + io_backend: |
| 58 | + type: disk |
| 59 | + |
| 60 | + val_4: |
| 61 | + name: Urban100 |
| 62 | + type: PairedImageDataset |
| 63 | + dataroot_gt: datasets/benchmark/Urban100/HR |
| 64 | + dataroot_lq: datasets/benchmark/Urban100/LR_bicubic/X4 |
| 65 | + filename_tmpl: '{}x4' |
| 66 | + io_backend: |
| 67 | + type: disk |
| 68 | + |
| 69 | +# network structures |
| 70 | +network_g: |
| 71 | + type: ECBSR |
| 72 | + num_in_ch: 3 |
| 73 | + num_out_ch: 3 |
| 74 | + num_block: 4 |
| 75 | + num_channel: 16 |
| 76 | + with_idt: False |
| 77 | + act_type: prelu |
| 78 | + scale: 4 |
| 79 | + |
| 80 | +# path |
| 81 | +path: |
| 82 | + pretrain_network_g: ~ |
| 83 | + strict_load_g: true |
| 84 | + resume_state: ~ |
| 85 | + |
| 86 | +# training settings |
| 87 | +train: |
| 88 | + ema_decay: 0 |
| 89 | + optim_g: |
| 90 | + type: Adam |
| 91 | + lr: !!float 5e-4 |
| 92 | + weight_decay: 0 |
| 93 | + betas: [0.9, 0.99] |
| 94 | + |
| 95 | + scheduler: |
| 96 | + type: MultiStepLR |
| 97 | + milestones: [1600000] |
| 98 | + gamma: 1 |
| 99 | + |
| 100 | + total_iter: 1600000 |
| 101 | + warmup_iter: -1 # no warm up |
| 102 | + |
| 103 | + # losses |
| 104 | + pixel_opt: |
| 105 | + type: L1Loss |
| 106 | + loss_weight: 1.0 |
| 107 | + reduction: mean |
| 108 | + |
| 109 | +# validation settings |
| 110 | +val: |
| 111 | + val_freq: !!float 1600 # the same as the original setting. # TODO: Can be larger |
| 112 | + save_img: false |
| 113 | + pbar: False |
| 114 | + |
| 115 | + metrics: |
| 116 | + psnr: |
| 117 | + type: calculate_psnr |
| 118 | + crop_border: 4 |
| 119 | + test_y_channel: true |
| 120 | + better: higher # the higher, the better. Default: higher |
| 121 | + ssim: |
| 122 | + type: calculate_ssim |
| 123 | + crop_border: 4 |
| 124 | + test_y_channel: true |
| 125 | + better: higher # the higher, the better. Default: higher |
| 126 | + |
| 127 | +# logging settings |
| 128 | +logger: |
| 129 | + print_freq: 100 |
| 130 | + save_checkpoint_freq: !!float 1600 |
| 131 | + use_tb_logger: true |
| 132 | + wandb: |
| 133 | + project: ~ |
| 134 | + resume_id: ~ |
| 135 | + |
| 136 | +# dist training settings |
| 137 | +dist_params: |
| 138 | + backend: nccl |
| 139 | + port: 29500 |
0 commit comments