Skip to content

Files

Latest commit

89ecece · Nov 10, 2021

History

History
704 lines (552 loc) · 43.9 KB

v1.4.0.rst

File metadata and controls

704 lines (552 loc) · 43.9 KB

What's new in 1.4.0 (??)

These are the changes in pandas 1.4.0. See :ref:`release` for a full changelog including other versions of pandas.

{{ header }}

Enhancements

More flexible numeric dtypes for indexes

Until now, it has only been possible to create numeric indexes with int64/float64/uint64 dtypes. It is now possible to create an index of any numpy int/uint/float dtype using the new :class:`NumericIndex` index type (:issue:`41153`):

.. ipython:: python

    pd.NumericIndex([1, 2, 3], dtype="int8")
    pd.NumericIndex([1, 2, 3], dtype="uint32")
    pd.NumericIndex([1, 2, 3], dtype="float32")

In order to maintain backwards compatibility, calls to the base :class:`Index` will currently return :class:`Int64Index`, :class:`UInt64Index` and :class:`Float64Index`, where relevant. For example, the code below returns an Int64Index with dtype int64:

In [1]: pd.Index([1, 2, 3], dtype="int8")
Int64Index([1, 2, 3], dtype='int64')

but will in a future version return a :class:`NumericIndex` with dtype int8.

More generally, currently, all operations that until now have returned :class:`Int64Index`, :class:`UInt64Index` and :class:`Float64Index` will continue to so. This means, that in order to use NumericIndex in the current version, you will have to call NumericIndex explicitly. For example the below series will have an Int64Index:

In [2]: ser = pd.Series([1, 2, 3], index=[1, 2, 3])
In [3]: ser.index
Int64Index([1, 2, 3], dtype='int64')

Instead, if you want to use a NumericIndex, you should do:

.. ipython:: python

    idx = pd.NumericIndex([1, 2, 3], dtype="int8")
    ser = pd.Series([1, 2, 3], index=idx)
    ser.index

In a future version of Pandas, :class:`NumericIndex` will become the default numeric index type and Int64Index, UInt64Index and Float64Index are therefore deprecated and will be removed in the future, see :ref:`here <whatsnew_140.deprecations.int64_uint64_float64index>` for more.

See :ref:`here <advanced.numericindex>` for more about :class:`NumericIndex`.

Styler

:class:`.Styler` has been further developed in 1.4.0. The following enhancements have been made:

Formerly Styler relied on display.html.use_mathjax, which has now been replaced by styler.html.mathjax.

There are also bug fixes and deprecations listed below.

Validation now for caption arg (:issue:`43368`)

Multithreaded CSV reading with a new CSV Engine based on pyarrow

:func:`pandas.read_csv` now accepts engine="pyarrow" (requires at least pyarrow 1.0.1) as an argument, allowing for faster csv parsing on multicore machines with pyarrow installed. See the :doc:`I/O docs </user_guide/io>` for more info. (:issue:`23697`, :issue:`43706`)

Rank function for rolling and expanding windows

Added rank function to :class:`Rolling` and :class:`Expanding`. The new function supports the method, ascending, and pct flags of :meth:`DataFrame.rank`. The method argument supports min, max, and average ranking methods. Example:

.. ipython:: python

    s = pd.Series([1, 4, 2, 3, 5, 3])
    s.rolling(3).rank()

    s.rolling(3).rank(method="max")

Groupby positional indexing

It is now possible to specify positional ranges relative to the ends of each group.

Negative arguments for :meth:`.GroupBy.head` and :meth:`.GroupBy.tail` now work correctly and result in ranges relative to the end and start of each group, respectively. Previously, negative arguments returned empty frames.

.. ipython:: python

    df = pd.DataFrame([["g", "g0"], ["g", "g1"], ["g", "g2"], ["g", "g3"],
                       ["h", "h0"], ["h", "h1"]], columns=["A", "B"])
    df.groupby("A").head(-1)


:meth:`.GroupBy.nth` now accepts a slice or list of integers and slices.

.. ipython:: python

    df.groupby("A").nth(slice(1, -1))
    df.groupby("A").nth([slice(None, 1), slice(-1, None)])

DataFrame.from_dict and DataFrame.to_dict have new 'tight' option

A new 'tight' dictionary format that preserves :class:`MultiIndex` entries and names is now available with the :meth:`DataFrame.from_dict` and :meth:`DataFrame.to_dict` methods and can be used with the standard json library to produce a tight representation of :class:`DataFrame` objects (:issue:`4889`).

.. ipython:: python

    df = pd.DataFrame.from_records(
        [[1, 3], [2, 4]],
        index=pd.MultiIndex.from_tuples([("a", "b"), ("a", "c")],
                                        names=["n1", "n2"]),
        columns=pd.MultiIndex.from_tuples([("x", 1), ("y", 2)],
                                          names=["z1", "z2"]),
    )
    df
    df.to_dict(orient='tight')

Other enhancements

Notable bug fixes

These are bug fixes that might have notable behavior changes.

Inconsistent date string parsing

The dayfirst option of :func:`to_datetime` isn't strict, and this can lead to surprising behaviour:

.. ipython:: python
    :okwarning:

    pd.to_datetime(["31-12-2021"], dayfirst=False)

Now, a warning will be raised if a date string cannot be parsed accordance to the given dayfirst value when the value is a delimited date string (e.g. 31-12-2012).

Ignoring dtypes in concat with empty or all-NA columns

When using :func:`concat` to concatenate two or more :class:`DataFrame` objects, if one of the DataFrames was empty or had all-NA values, its dtype was _sometimes_ ignored when finding the concatenated dtype. These are now consistently _not_ ignored (:issue:`43507`).

.. ipython:: python

    df1 = pd.DataFrame({"bar": [pd.Timestamp("2013-01-01")]}, index=range(1))
    df2 = pd.DataFrame({"bar": np.nan}, index=range(1, 2))
    res = df1.append(df2)

Previously, the float-dtype in df2 would be ignored so the result dtype would be datetime64[ns]. As a result, the np.nan would be cast to NaT.

Previous behavior:

In [4]: res
Out[4]:
         bar
0 2013-01-01
1        NaT

Now the float-dtype is respected. Since the common dtype for these DataFrames is object, the np.nan is retained.

New behavior:

.. ipython:: python

    res

Null-values are no longer coerced to NaN-value in value_counts and mode

:meth:`Series.value_counts` and :meth:`Series.mode` no longer coerce None, NaT and other null-values to a NaN-value for np.object-dtype. This behavior is now consistent with unique, isin and others (:issue:`42688`).

.. ipython:: python

    s = pd.Series([True, None, pd.NaT, None, pd.NaT, None])
    res = s.value_counts(dropna=False)

Previously, all null-values were replaced by a NaN-value.

Previous behavior:

In [3]: res
Out[3]:
NaN     5
True    1
dtype: int64

Now null-values are no longer mangled.

New behavior:

.. ipython:: python

    res

notable_bug_fix3

Backwards incompatible API changes

Increased minimum versions for dependencies

Some minimum supported versions of dependencies were updated. If installed, we now require:

Package Minimum Version Required Changed
numpy 1.18.5 X X
pytz 2020.1 X X
python-dateutil 2.8.1 X X
bottleneck 1.3.1   X
numexpr 2.7.1   X
pytest (dev) 6.0    
mypy (dev) 0.910   X

For optional libraries the general recommendation is to use the latest version. The following table lists the lowest version per library that is currently being tested throughout the development of pandas. Optional libraries below the lowest tested version may still work, but are not considered supported.

Package Minimum Version Changed
beautifulsoup4 4.8.2 X
fastparquet 0.4.0  
fsspec 0.7.4  
gcsfs 0.6.0  
lxml 4.5.0 X
matplotlib 3.3.2 X
numba 0.50.1 X
openpyxl 3.0.2 X
pyarrow 1.0.1 X
pymysql 0.10.1 X
pytables 3.6.1 X
s3fs 0.4.0  
scipy 1.4.1 X
sqlalchemy 1.3.11 X
tabulate 0.8.7  
xarray 0.15.1 X
xlrd 2.0.1 X
xlsxwriter 1.2.2 X
xlwt 1.3.0  
pandas-gbq 0.14.0 X

See :ref:`install.dependencies` and :ref:`install.optional_dependencies` for more.

Other API changes

Deprecations

Deprecated Int64Index, UInt64Index & Float64Index

:class:`Int64Index`, :class:`UInt64Index` and :class:`Float64Index` have been deprecated in favor of the new :class:`NumericIndex` and will be removed in Pandas 2.0 (:issue:`43028`).

Currently, in order to maintain backward compatibility, calls to :class:`Index` will continue to return :class:`Int64Index`, :class:`UInt64Index` and :class:`Float64Index` when given numeric data, but in the future, a :class:`NumericIndex` will be returned.

Current behavior:

In [1]: pd.Index([1, 2, 3], dtype="int32")
Out [1]: Int64Index([1, 2, 3], dtype='int64')
In [1]: pd.Index([1, 2, 3], dtype="uint64")
Out [1]: UInt64Index([1, 2, 3], dtype='uint64')

Future behavior:

In [3]: pd.Index([1, 2, 3], dtype="int32")
Out [3]: NumericIndex([1, 2, 3], dtype='int32')
In [4]: pd.Index([1, 2, 3], dtype="uint64")
Out [4]: NumericIndex([1, 2, 3], dtype='uint64')

Other Deprecations

Performance improvements

Bug fixes

Categorical

Datetimelike

Timedelta

Timezones

Numeric

Conversion

Strings

Interval

Indexing

Missing

MultiIndex

I/O

Period

Plotting

Groupby/resample/rolling

Reshaping

Sparse

ExtensionArray

Styler

Other

Contributors