-
-
Notifications
You must be signed in to change notification settings - Fork 150
/
Copy patheffsize.py
879 lines (699 loc) · 30.1 KB
/
effsize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
# Author: Raphael Vallat <raphaelvallat9@gmail.com>
# Date: April 2018
import warnings
import numpy as np
from scipy.stats import pearsonr
from pingouin.utils import _check_eftype, remove_na
# from pingouin.distribution import homoscedasticity
__all__ = [
"compute_esci",
"compute_bootci",
"convert_effsize",
"compute_effsize",
"compute_effsize_from_t",
]
def compute_esci(
stat=None,
nx=None,
ny=None,
paired=False,
eftype="cohen",
confidence=0.95,
decimals=2,
alternative="two-sided",
):
"""Parametric confidence intervals around a Cohen d or a correlation coefficient.
Parameters
----------
stat : float
Original effect size. Must be either a correlation coefficient or a Cohen-type effect size
(Cohen d or Hedges g).
nx, ny : int
Length of vector x and y.
paired : bool
Indicates if the effect size was estimated from a paired sample. This is only relevant for
cohen or hedges effect size.
eftype : string
Effect size type. Must be "r" (correlation) or "cohen" (Cohen d or Hedges g).
confidence : float
Confidence level (0.95 = 95%)
decimals : int
Number of rounded decimals.
alternative : string
Defines the alternative hypothesis, or tail for the correlation coefficient. Must be one of
"two-sided" (default), "greater" or "less". This parameter only has an effect if ``eftype``
is "r".
Returns
-------
ci : array
Desired converted effect size
Notes
-----
To compute the parametric confidence interval around a **Pearson r correlation** coefficient,
one must first apply a Fisher's r-to-z transformation:
.. math:: z = 0.5 \\cdot \\ln \\frac{1 + r}{1 - r} = \\text{arctanh}(r)
and compute the standard error:
.. math:: \\text{SE} = \\frac{1}{\\sqrt{n - 3}}
where :math:`n` is the sample size.
The lower and upper confidence intervals - *in z-space* - are then given by:
.. math:: \\text{ci}_z = z \\pm \\text{crit} \\cdot \\text{SE}
where :math:`\\text{crit}` is the critical value of the normal distribution corresponding to
the desired confidence level (e.g. 1.96 in case of a 95% confidence interval).
These confidence intervals can then be easily converted back to *r-space*:
.. math::
\\text{ci}_r = \\frac{\\exp(2 \\cdot \\text{ci}_z) - 1}
{\\exp(2 \\cdot \\text{ci}_z) + 1} = \\text{tanh}(\\text{ci}_z)
A formula for calculating the confidence interval for a **Cohen d effect size** is given by
Hedges and Olkin (1985, p86). If the effect size estimate from the sample is :math:`d`, then
it follows a T distribution with standard error:
.. math::
\\text{SE} = \\sqrt{\\frac{n_x + n_y}{n_x \\cdot n_y} +
\\frac{d^2}{2 (n_x + n_y)}}
where :math:`n_x` and :math:`n_y` are the sample sizes of the two groups.
In one-sample test or paired test, this becomes:
.. math::
\\text{SE} = \\sqrt{\\frac{1}{n_x} + \\frac{d^2}{2 n_x}}
The lower and upper confidence intervals are then given by:
.. math:: \\text{ci}_d = d \\pm \\text{crit} \\cdot \\text{SE}
where :math:`\\text{crit}` is the critical value of the T distribution corresponding to the
desired confidence level.
References
----------
* https://en.wikipedia.org/wiki/Fisher_transformation
* Hedges, L., and Ingram Olkin. "Statistical models for meta-analysis." (1985).
* http://www.leeds.ac.uk/educol/documents/00002182.htm
* https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5133225/
Examples
--------
1. Confidence interval of a Pearson correlation coefficient
>>> import pingouin as pg
>>> x = [3, 4, 6, 7, 5, 6, 7, 3, 5, 4, 2]
>>> y = [4, 6, 6, 7, 6, 5, 5, 2, 3, 4, 1]
>>> nx, ny = len(x), len(y)
>>> stat = pg.compute_effsize(x, y, eftype='r')
>>> ci = pg.compute_esci(stat=stat, nx=nx, ny=ny, eftype='r')
>>> print(round(stat, 4), ci)
0.7468 [0.27 0.93]
2. Confidence interval of a Cohen d
>>> stat = pg.compute_effsize(x, y, eftype='cohen')
>>> ci = pg.compute_esci(stat, nx=nx, ny=ny, eftype='cohen', decimals=3)
>>> print(round(stat, 4), ci)
0.1538 [-0.737 1.045]
"""
from scipy.stats import norm, t
assert eftype.lower() in ["r", "pearson", "spearman", "cohen", "d", "g", "hedges"]
assert alternative in [
"two-sided",
"greater",
"less",
], "Alternative must be one of 'two-sided' (default), 'greater' or 'less'."
assert stat is not None and nx is not None
assert isinstance(confidence, float)
assert 0 < confidence < 1, "confidence must be between 0 and 1."
if eftype.lower() in ["r", "pearson", "spearman"]:
z = np.arctanh(stat) # R-to-z transform
se = 1 / np.sqrt(nx - 3)
# See https://github.com/SurajGupta/r-source/blob/master/src/library/stats/R/cor.test.R
if alternative == "two-sided":
crit = np.abs(norm.ppf((1 - confidence) / 2))
ci_z = np.array([z - crit * se, z + crit * se])
elif alternative == "greater":
crit = norm.ppf(confidence)
ci_z = np.array([z - crit * se, np.inf])
else: # alternative = "less"
crit = norm.ppf(confidence)
ci_z = np.array([-np.inf, z + crit * se])
ci = np.tanh(ci_z) # Transform back to r
else:
# Cohen d. Results are different than JASP which uses a non-central T
# distribution. See github.com/jasp-stats/jasp-issues/issues/525
if ny == 1 or paired:
# One-sample or paired. Results vary slightly from the cohen.d R
# function which uses instead:
# >>> sqrt((n / (n / 2)^2) + .5*(dd^2 / n)) -- one-sample
# >>> sqrt( (1/n1 + dd^2/(2*n1))*(2-2*r)); -- paired
# where r is the correlation between samples
# https://github.com/mtorchiano/effsize/blob/master/R/CohenD.R
# However, Pingouin uses the formulas on www.real-statistics.com
se = np.sqrt(1 / nx + stat**2 / (2 * nx))
dof = nx - 1
else:
# Independent two-samples: give same results as R:
# >>> cohen.d(..., paired = FALSE, noncentral=FALSE)
se = np.sqrt(((nx + ny) / (nx * ny)) + (stat**2) / (2 * (nx + ny)))
dof = nx + ny - 2
crit = np.abs(t.ppf((1 - confidence) / 2, dof))
ci = np.array([stat - crit * se, stat + crit * se])
return np.round(ci, decimals)
def compute_bootci(
x,
y=None,
func=None,
method="cper",
paired=False,
confidence=0.95,
n_boot=2000,
decimals=2,
seed=None,
return_dist=False,
):
"""Bootstrapped confidence intervals of univariate and bivariate functions.
Parameters
----------
x : 1D-array or list
First sample. Required for both bivariate and univariate functions.
y : 1D-array, list, or None
Second sample. Required only for bivariate functions.
func : str or custom function
Function to compute the bootstrapped statistic. Accepted string values are:
* ``'pearson'``: Pearson correlation (bivariate, paired x and y)
* ``'spearman'``: Spearman correlation (bivariate, paired x and y)
* ``'cohen'``: Cohen d effect size (bivariate, paired or unpaired x and y)
* ``'hedges'``: Hedges g effect size (bivariate, paired or unpaired x and y)
* ``'mean'``: Mean (univariate = only x)
* ``'std'``: Standard deviation (univariate)
* ``'var'``: Variance (univariate)
method : str
Method to compute the confidence intervals (see Notes):
* ``'cper'``: Bias-corrected percentile method (default)
* ``'norm'``: Normal approximation with bootstrapped bias and standard error
* ``'per'``: Simple percentile
paired : boolean
Indicates whether x and y are paired or not. For example, for correlation functions or
paired T-test, x and y are assumed to be paired. Pingouin will resample the pairs
(x_i, y_i) when paired=True, and resample x and y separately when paired=False.
If paired=True, x and y must have the same number of elements.
confidence : float
Confidence level (0.95 = 95%)
n_boot : int
Number of bootstrap iterations. The higher, the better, the slower.
decimals : int
Number of rounded decimals.
seed : int or None
Random seed for generating bootstrap samples.
return_dist : boolean
If True, return the confidence intervals and the bootstrapped distribution (e.g. for
plotting purposes).
Returns
-------
ci : array
Bootstrapped confidence intervals.
Notes
-----
Results have been tested against the
`bootci <https://www.mathworks.com/help/stats/bootci.html>`_ Matlab function.
Since version 1.7, SciPy also includes a built-in bootstrap function
:py:func:`scipy.stats.bootstrap`. The SciPy implementation has two advantages over Pingouin: it
is faster when using ``vectorized=True``, and it supports the bias-corrected and accelerated
(BCa) confidence intervals for univariate functions. However, unlike Pingouin, it does not
return the bootstrap distribution.
The percentile bootstrap method (``per``) is defined as the
:math:`100 \\times \\frac{\\alpha}{2}` and :math:`100 \\times \\frac{1 - \\alpha}{2}`
percentiles of the distribution of :math:`\\theta` estimates obtained from resampling, where
:math:`\\alpha` is the level of significance (1 - confidence, default = 0.05 for 95% CIs).
The bias-corrected percentile method (``cper``) corrects for bias of the bootstrap
distribution. This method is different from the BCa method — the default in Matlab and SciPy —
which corrects for both bias and skewness of the bootstrap distribution using jackknife
resampling.
The normal approximation method (``norm``) calculates the confidence intervals with the
standard normal distribution using bootstrapped bias and standard error.
References
----------
* DiCiccio, T. J., & Efron, B. (1996). Bootstrap confidence intervals. Statistical science,
189-212.
* Davison, A. C., & Hinkley, D. V. (1997). Bootstrap methods and their application (Vol. 1).
Cambridge university press.
* Jung, Lee, Gupta, & Cho (2019). Comparison of bootstrap confidence interval methods for
GSCA using a Monte Carlo simulation. Frontiers in psychology, 10, 2215.
Examples
--------
1. Bootstrapped 95% confidence interval of a Pearson correlation
>>> import pingouin as pg
>>> import numpy as np
>>> rng = np.random.default_rng(42)
>>> x = rng.normal(loc=4, scale=2, size=100)
>>> y = rng.normal(loc=3, scale=1, size=100)
>>> stat = np.corrcoef(x, y)[0][1]
>>> ci = pg.compute_bootci(x, y, func='pearson', paired=True, seed=42, decimals=4)
>>> print(round(stat, 4), ci)
0.0945 [-0.098 0.2738]
Let's compare to SciPy's built-in bootstrap function
>>> from scipy.stats import bootstrap
>>> bt_scipy = bootstrap(
... data=(x, y), statistic=lambda x, y: np.corrcoef(x, y)[0][1],
... method="basic", vectorized=False, n_resamples=2000, paired=True, random_state=42)
>>> np.round(bt_scipy.confidence_interval, 4)
array([-0.0952, 0.2883])
2. Bootstrapped 95% confidence interval of a Cohen d
>>> stat = pg.compute_effsize(x, y, eftype='cohen')
>>> ci = pg.compute_bootci(x, y, func='cohen', seed=42, decimals=3)
>>> print(round(stat, 4), ci)
0.7009 [0.403 1.009]
3. Bootstrapped confidence interval of a standard deviation (univariate)
>>> import numpy as np
>>> stat = np.std(x, ddof=1)
>>> ci = pg.compute_bootci(x, func='std', seed=123)
>>> print(round(stat, 4), ci)
1.5534 [1.38 1.8 ]
Compare to SciPy's built-in bootstrap function, which returns the bias-corrected and
accelerated CIs (see Notes).
>>> def std(x, axis):
... return np.std(x, ddof=1, axis=axis)
>>> bt_scipy = bootstrap(data=(x, ), statistic=std, n_resamples=2000, random_state=123)
>>> np.round(bt_scipy.confidence_interval, 2)
array([1.39, 1.81])
Changing the confidence intervals type in Pingouin
>>> pg.compute_bootci(x, func='std', seed=123, method="norm")
array([1.37, 1.76])
>>> pg.compute_bootci(x, func='std', seed=123, method="percentile")
array([1.35, 1.75])
4. Bootstrapped confidence interval using a custom univariate function
>>> from scipy.stats import skew
>>> round(skew(x), 4), pg.compute_bootci(x, func=skew, n_boot=10000, seed=123)
(-0.137, array([-0.55, 0.32]))
5. Bootstrapped confidence interval using a custom bivariate function. Here, x and y are not
paired and can therefore have different sizes.
>>> def mean_diff(x, y):
... return np.mean(x) - np.mean(y)
>>> y2 = rng.normal(loc=3, scale=1, size=200) # y2 has 200 samples, x has 100
>>> ci = pg.compute_bootci(x, y2, func=mean_diff, n_boot=10000, seed=123)
>>> print(round(mean_diff(x, y2), 2), ci)
0.88 [0.54 1.21]
We can also get the bootstrapped distribution
>>> ci, bt = pg.compute_bootci(x, y2, func=mean_diff, n_boot=10000, return_dist=True, seed=9)
>>> print(f"The bootstrap distribution has {bt.size} samples. The mean and standard "
... f"{bt.mean():.4f} ± {bt.std():.4f}")
The bootstrap distribution has 10000 samples. The mean and standard 0.8807 ± 0.1704
"""
from inspect import isfunction, isroutine
from scipy.stats import norm
# Check other arguments
assert isinstance(confidence, float)
assert 0 < confidence < 1, "confidence must be between 0 and 1."
assert method in ["norm", "normal", "percentile", "per", "cpercentile", "cper"]
assert isfunction(func) or isinstance(func, str) or isroutine(func), (
"func must be a function (e.g. np.mean, custom function) or a string (e.g. 'pearson'). "
"See documentation for more details."
)
vectorizable = False
# Check x
x = np.asarray(x)
nx = x.size
assert x.ndim == 1, "x must be one-dimensional."
assert nx > 1, "x must have more than one element."
# Check y
if y is not None:
y = np.asarray(y)
ny = y.size
assert y.ndim == 1, "y must be one-dimensional."
assert ny > 1, "y must have more than one element."
if paired:
assert nx == ny, "x and y must have the same number of elements when paired=True."
# Check string functions
if isinstance(func, str):
func_str = "%s" % func
if func == "pearson":
assert paired, "Paired should be True if using correlation functions."
def func(x, y):
return pearsonr(x, y)[0] # Faster than np.corrcoef
elif func == "spearman":
from scipy.stats import spearmanr
assert paired, "Paired should be True if using correlation functions."
def func(x, y):
return spearmanr(x, y)[0]
elif func in ["cohen", "hedges"]:
from pingouin.effsize import compute_effsize
def func(x, y):
return compute_effsize(x, y, paired=paired, eftype=func_str)
elif func == "mean":
vectorizable = True
def func(x):
return np.mean(x, axis=0)
elif func == "std":
vectorizable = True
def func(x):
return np.std(x, ddof=1, axis=0)
elif func == "var":
vectorizable = True
def func(x):
return np.var(x, ddof=1, axis=0)
else:
raise ValueError("Function string not recognized.")
# Bootstrap
bootstat = np.empty(n_boot)
rng = np.random.default_rng(seed) # Random seed
boot_x = rng.choice(np.arange(nx), size=(nx, n_boot), replace=True)
if y is not None:
reference = func(x, y)
if paired:
for i in range(n_boot):
# Note that here we use a bootstrapping procedure with replacement
# of all the pairs (Xi, Yi). This is NOT suited for
# hypothesis testing such as p-value estimation). Instead, for the
# latter, one must only shuffle the Y values while keeping the X
# values constant, i.e.:
# >>> boot_x = rng.random_sample((n_boot, n)).argsort(axis=1)
# >>> for i in range(n_boot):
# >>> bootstat[i] = func(x, y[boot_x[i, :]])
bootstat[i] = func(x[boot_x[:, i]], y[boot_x[:, i]])
else:
boot_y = rng.choice(np.arange(ny), size=(ny, n_boot), replace=True)
for i in range(n_boot):
bootstat[i] = func(x[boot_x[:, i]], y[boot_y[:, i]])
else:
reference = func(x)
if vectorizable:
bootstat = func(x[boot_x])
else:
for i in range(n_boot):
bootstat[i] = func(x[boot_x[:, i]])
# CONFIDENCE INTERVALS
# See Matlab bootci function
alpha = (1 - confidence) / 2
if method in ["norm", "normal"]:
# Normal approximation
za = norm.ppf(alpha) # = 1.96
se = np.std(bootstat, ddof=1)
bias = np.mean(bootstat - reference)
ci = np.array([reference - bias + se * za, reference - bias - se * za])
elif method in ["percentile", "per"]:
# Simple percentile
interval = 100 * np.array([alpha, 1 - alpha])
ci = np.percentile(bootstat, interval)
pass
else:
# Bias-corrected percentile bootstrap
from pingouin.regression import _bias_corrected_ci
ci = _bias_corrected_ci(bootstat, reference, alpha=(1 - confidence))
ci = np.round(ci, decimals)
if return_dist:
return ci, bootstat
else:
return ci
def convert_effsize(ef, input_type, output_type, nx=None, ny=None):
"""Conversion between effect sizes.
Parameters
----------
ef : float
Original effect size.
input_type : string
Effect size type of ef. Must be ``'cohen'`` or ``'pointbiserialr'``.
output_type : string
Desired effect size type. Available methods are:
* ``'cohen'``: Unbiased Cohen d
* ``'hedges'``: Hedges g
* ``'pointbiserialr'``: Point-biserial correlation
* ``'eta_square'``: Eta-square
* ``'odds_ratio'``: Odds ratio
* ``'AUC'``: Area Under the Curve
* ``'none'``: pass-through (return ``ef``)
nx, ny : int, optional
Length of vector x and y. Required to convert to Hedges g.
Returns
-------
ef : float
Desired converted effect size
See Also
--------
compute_effsize : Calculate effect size between two set of observations.
compute_effsize_from_t : Convert a T-statistic to an effect size.
Notes
-----
The formula to convert from a`point-biserial correlation
<https://en.wikipedia.org/wiki/Point-biserial_correlation_coefficient>`_ **r** to **d** is
given in [1]_:
.. math:: d = \\frac{2r_{pb}}{\\sqrt{1 - r_{pb}^2}}
The formula to convert **d** to a point-biserial correlation **r** is given in [2]_:
.. math::
r_{pb} = \\frac{d}{\\sqrt{d^2 + \\frac{(n_x + n_y)^2 - 2(n_x + n_y)}
{n_xn_y}}}
The formula to convert **d** to :math:`\\eta^2` is given in [3]_:
.. math:: \\eta^2 = \\frac{(0.5 d)^2}{1 + (0.5 d)^2}
The formula to convert **d** to an odds-ratio is given in [4]_:
.. math:: \\text{OR} = \\exp (\\frac{d \\pi}{\\sqrt{3}})
The formula to convert **d** to area under the curve is given in [5]_:
.. math:: \\text{AUC} = \\mathcal{N}_{cdf}(\\frac{d}{\\sqrt{2}})
References
----------
.. [1] Rosenthal, Robert. "Parametric measures of effect size."
The handbook of research synthesis 621 (1994): 231-244.
.. [2] McGrath, Robert E., and Gregory J. Meyer. "When effect sizes
disagree: the case of r and d." Psychological methods 11.4 (2006): 386.
.. [3] Cohen, Jacob. "Statistical power analysis for the behavioral
sciences. 2nd." (1988).
.. [4] Borenstein, Michael, et al. "Effect sizes for continuous data."
The handbook of research synthesis and meta-analysis 2 (2009): 221-235.
.. [5] Ruscio, John. "A probability-based measure of effect size:
Robustness to base rates and other factors." Psychological methods 1
3.1 (2008): 19.
Examples
--------
1. Convert from Cohen d to eta-square
>>> import pingouin as pg
>>> d = .45
>>> eta = pg.convert_effsize(d, 'cohen', 'eta_square')
>>> print(eta)
0.048185603807257595
2. Convert from Cohen d to Hegdes g (requires the sample sizes of each
group)
>>> pg.convert_effsize(.45, 'cohen', 'hedges', nx=10, ny=10)
0.4309859154929578
3. Convert a point-biserial correlation to Cohen d
>>> rpb = 0.40
>>> d = pg.convert_effsize(rpb, 'pointbiserialr', 'cohen')
>>> print(d)
0.8728715609439696
4. Reverse operation: convert Cohen d to a point-biserial correlation
>>> pg.convert_effsize(d, 'cohen', 'pointbiserialr')
0.4000000000000001
"""
it = input_type.lower()
ot = output_type.lower()
# Check input and output type
for inp in [it, ot]:
if not _check_eftype(inp):
err = f"Could not interpret input '{inp}'"
raise ValueError(err)
if it not in ["pointbiserialr", "cohen"]:
raise ValueError("Input type must be 'cohen' or 'pointbiserialr'")
# Pass-through option
if it == ot or ot == "none":
return ef
# Convert point-biserial r to Cohen d (Rosenthal 1994)
d = (2 * ef) / np.sqrt(1 - ef**2) if it == "pointbiserialr" else ef
# Then convert to the desired output type
if ot == "cohen":
return d
elif ot == "hedges":
if all(v is not None for v in [nx, ny]):
return d * (1 - (3 / (4 * (nx + ny) - 9)))
else:
# If shapes of x and y are not known, return cohen's d
warnings.warn(
"You need to pass nx and ny arguments to compute "
"Hedges g. Returning Cohen's d instead"
)
return d
elif ot == "pointbiserialr":
# McGrath and Meyer 2006
if all(v is not None for v in [nx, ny]):
a = ((nx + ny) ** 2 - 2 * (nx + ny)) / (nx * ny)
else:
a = 4
return d / np.sqrt(d**2 + a)
elif ot == "eta_square":
# Cohen 1988
return (d / 2) ** 2 / (1 + (d / 2) ** 2)
elif ot == "odds_ratio":
# Borenstein et al. 2009
return np.exp(d * np.pi / np.sqrt(3))
elif ot == "r":
# https://github.com/raphaelvallat/pingouin/issues/302
raise ValueError(
"Using effect size 'r' in `pingouin.convert_effsize` has been deprecated. "
"Please use 'pointbiserialr' instead."
)
else: # ['auc']
# Ruscio 2008
from scipy.stats import norm
return norm.cdf(d / np.sqrt(2))
def compute_effsize(x, y, paired=False, eftype="cohen"):
"""Calculate effect size between two set of observations.
Parameters
----------
x : np.array or list
First set of observations.
y : np.array or list
Second set of observations.
paired : boolean
If True, uses Cohen d-avg formula to correct for repeated measurements
(see Notes).
eftype : string
Desired output effect size.
Available methods are:
* ``'none'``: no effect size
* ``'cohen'``: Unbiased Cohen d
* ``'hedges'``: Hedges g
* ``'r'``: Pearson correlation coefficient
* ``'pointbiserialr'``: Point-biserial correlation
* ``'eta_square'``: Eta-square
* ``'odds_ratio'``: Odds ratio
* ``'AUC'``: Area Under the Curve
* ``'CLES'``: Common Language Effect Size
Returns
-------
ef : float
Effect size
See Also
--------
convert_effsize : Conversion between effect sizes.
compute_effsize_from_t : Convert a T-statistic to an effect size.
Notes
-----
Missing values are automatically removed from the data. If ``x`` and ``y`` are paired, the
entire row is removed.
If ``x`` and ``y`` are independent, the Cohen :math:`d` is:
.. math::
d = \\frac{\\overline{X} - \\overline{Y}}
{\\sqrt{\\frac{(n_{1} - 1)\\sigma_{1}^{2} + (n_{2} - 1)
\\sigma_{2}^{2}}{n1 + n2 - 2}}}
If ``x`` and ``y`` are paired, the Cohen :math:`d_{avg}` is computed:
.. math::
d_{avg} = \\frac{\\overline{X} - \\overline{Y}}
{\\sqrt{\\frac{(\\sigma_1^2 + \\sigma_2^2)}{2}}}
The Cohen's d is a biased estimate of the population effect size, especially for small samples
(n < 20). It is often preferable to use the corrected Hedges :math:`g` instead:
.. math:: g = d \\times (1 - \\frac{3}{4(n_1 + n_2) - 9})
The common language effect size is the proportion of pairs where ``x`` is higher than ``y``
(calculated with a brute-force approach where each observation of ``x`` is paired to each
observation of ``y``, see :py:func:`pingouin.wilcoxon` for more details):
.. math:: \\text{CL} = P(X > Y) + .5 \\times P(X = Y)
For other effect sizes, Pingouin will first calculate a Cohen :math:`d` and then use the
:py:func:`pingouin.convert_effsize` to convert to the desired effect size.
References
----------
* Lakens, D., 2013. Calculating and reporting effect sizes to
facilitate cumulative science: a practical primer for t-tests and
ANOVAs. Front. Psychol. 4, 863. https://doi.org/10.3389/fpsyg.2013.00863
* Cumming, Geoff. Understanding the new statistics: Effect sizes,
confidence intervals, and meta-analysis. Routledge, 2013.
* https://osf.io/vbdah/
Examples
--------
1. Cohen d from two independent samples.
>>> import numpy as np
>>> import pingouin as pg
>>> x = [1, 2, 3, 4]
>>> y = [3, 4, 5, 6, 7]
>>> pg.compute_effsize(x, y, paired=False, eftype='cohen')
-1.707825127659933
The sign of the Cohen d will be opposite if we reverse the order of
``x`` and ``y``:
>>> pg.compute_effsize(y, x, paired=False, eftype='cohen')
1.707825127659933
2. Hedges g from two paired samples.
>>> x = [1, 2, 3, 4, 5, 6, 7]
>>> y = [1, 3, 5, 7, 9, 11, 13]
>>> pg.compute_effsize(x, y, paired=True, eftype='hedges')
-0.8222477210374874
3. Common Language Effect Size.
>>> pg.compute_effsize(x, y, eftype='cles')
0.2857142857142857
In other words, there are ~29% of pairs where ``x`` is higher than ``y``,
which means that there are ~71% of pairs where ``x`` is *lower* than ``y``.
This can be easily verified by changing the order of ``x`` and ``y``:
>>> pg.compute_effsize(y, x, eftype='cles')
0.7142857142857143
"""
# Check arguments
if not _check_eftype(eftype):
err = f"Could not interpret input '{eftype}'"
raise ValueError(err)
x = np.asarray(x)
y = np.asarray(y)
if x.size != y.size and paired:
warnings.warn("x and y have unequal sizes. Switching to paired == False.")
paired = False
# Remove rows with missing values
x, y = remove_na(x, y, paired=paired)
nx, ny = x.size, y.size
if ny == 1:
# Case 1: One-sample Test
d = (x.mean() - y) / x.std(ddof=1)
return d
if eftype.lower() == "r":
# Return correlation coefficient (useful for CI bootstrapping)
r, _ = pearsonr(x, y)
return r
elif eftype.lower() == "cles":
# Compute exact CLES (see pingouin.wilcoxon)
diff = x[:, None] - y
return np.where(diff == 0, 0.5, diff > 0).mean()
else:
# Compute unbiased Cohen's d effect size
if not paired:
# https://en.wikipedia.org/wiki/Effect_size
dof = nx + ny - 2
poolsd = np.sqrt(((nx - 1) * x.var(ddof=1) + (ny - 1) * y.var(ddof=1)) / dof)
d = (x.mean() - y.mean()) / poolsd
else:
# Report Cohen d-avg (Cumming 2012; Lakens 2013)
# Careful, the formula in Lakens 2013 is wrong. Updated in Pingouin
# v0.3.4 to use the formula provided by Cummings 2012.
# Before that the denominator was just (SD1 + SD2) / 2
d = (x.mean() - y.mean()) / np.sqrt((x.var(ddof=1) + y.var(ddof=1)) / 2)
return convert_effsize(d, "cohen", eftype, nx=nx, ny=ny)
def compute_effsize_from_t(tval, nx=None, ny=None, N=None, eftype="cohen"):
"""Compute effect size from a T-value.
Parameters
----------
tval : float
T-value
nx, ny : int, optional
Group sample sizes.
N : int, optional
Total sample size (will not be used if nx and ny are specified)
eftype : string, optional
Desired output effect size.
Returns
-------
ef : float
Effect size
See Also
--------
compute_effsize : Calculate effect size between two set of observations.
convert_effsize : Conversion between effect sizes.
Notes
-----
If both nx and ny are specified, the formula to convert from *t* to *d* is:
.. math:: d = t * \\sqrt{\\frac{1}{n_x} + \\frac{1}{n_y}}
If only N (total sample size) is specified, the formula is:
.. math:: d = \\frac{2t}{\\sqrt{N}}
Examples
--------
1. Compute effect size from a T-value when both sample sizes are known.
>>> from pingouin import compute_effsize_from_t
>>> tval, nx, ny = 2.90, 35, 25
>>> d = compute_effsize_from_t(tval, nx=nx, ny=ny, eftype='cohen')
>>> print(d)
0.7593982580212534
2. Compute effect size when only total sample size is known (nx+ny)
>>> tval, N = 2.90, 60
>>> d = compute_effsize_from_t(tval, N=N, eftype='cohen')
>>> print(d)
0.7487767802667672
"""
if not _check_eftype(eftype):
err = f"Could not interpret input '{eftype}'"
raise ValueError(err)
if not isinstance(tval, float):
err = "T-value must be float"
raise ValueError(err)
# Compute Cohen d (Lakens, 2013)
if nx is not None and ny is not None:
d = tval * np.sqrt(1 / nx + 1 / ny)
elif N is not None:
d = 2 * tval / np.sqrt(N)
else:
raise ValueError("You must specify either nx + ny, or just N")
return convert_effsize(d, "cohen", eftype, nx=nx, ny=ny)