|
| 1 | +# time complexity: O((n*k + e)log(n*k)) |
| 2 | +# space complexity: O(n*k + e) |
| 3 | +import heapq |
| 4 | +from typing import List |
| 5 | + |
| 6 | + |
| 7 | +class Solution: |
| 8 | + def minimumCost(self, n: int, highways: List[List[int]], discounts: int) -> int: |
| 9 | + graph = [[] for _ in range(n)] |
| 10 | + for highway in highways: |
| 11 | + u, v, toll = highway |
| 12 | + graph[u].append((v, toll)) |
| 13 | + graph[v].append((u, toll)) |
| 14 | + pq = [(0, 0, 0)] |
| 15 | + dist = [[float("inf")] * (discounts + 1) for _ in range(n)] |
| 16 | + dist[0][0] = 0 |
| 17 | + visited = [[False] * (discounts + 1) for _ in range(n)] |
| 18 | + while pq: |
| 19 | + currentCost, city, discountsUsed = heapq.heappop(pq) |
| 20 | + if visited[city][discountsUsed]: |
| 21 | + continue |
| 22 | + visited[city][discountsUsed] = True |
| 23 | + for neighbor, toll in graph[city]: |
| 24 | + if currentCost + toll < dist[neighbor][discountsUsed]: |
| 25 | + dist[neighbor][discountsUsed] = currentCost + toll |
| 26 | + heapq.heappush( |
| 27 | + pq, (dist[neighbor][discountsUsed], neighbor, discountsUsed)) |
| 28 | + |
| 29 | + if discountsUsed < discounts: |
| 30 | + newCostWithDiscount = currentCost + toll // 2 |
| 31 | + if (newCostWithDiscount < dist[neighbor][discountsUsed + 1]): |
| 32 | + dist[neighbor][ |
| 33 | + discountsUsed + 1 |
| 34 | + ] = newCostWithDiscount |
| 35 | + heapq.heappush( |
| 36 | + pq, (newCostWithDiscount, neighbor, discountsUsed + 1)) |
| 37 | + |
| 38 | + minCost = min(dist[n - 1]) |
| 39 | + return -1 if minCost == float("inf") else minCost |
| 40 | + |
| 41 | + |
| 42 | +n = 5 |
| 43 | +highways = [[0, 1, 4], [2, 1, 3], [1, 4, 11], [3, 2, 3], [3, 4, 2]] |
| 44 | +discounts = 1 |
| 45 | +print(Solution().minimumCost(n, highways, discounts)) |
0 commit comments