+{"lv.id.jc.algorithm.graph.SearchAlgorithmsSpec":{"executedFeatures":["should find a route for a complex graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":1,"totalFeatures":1,"passed":1,"successRate":1.0,"time":46},"title":"Comparison of two algorithms","narrative":""},"lv.id.jc.algorithm.graph.BreadthFirstSearchSpec":{"executedFeatures":["should find a route for complex graph","should find a route for simple graph","should return an empty path if can't find a route","should thrown NPE path for an empty graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":4,"totalFeatures":4,"passed":4,"successRate":1.0,"time":16},"title":"Breadth First Search Algorithm","narrative":"Breadth First Search algorithm for finding the shortest paths between nodes in a graph"},"lv.id.jc.algorithm.graph.DijkstrasAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph","should find a route for a medium graph","should find a route for a simple graph","should return an empty path if can't find a route","should thrown NPE for an empty graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":45},"title":"Dijkstra's Algorithm","narrative":"Dijkstra's algorithm is an algorithm for finding the fastest paths between nodes in a graph"},"lv.id.jc.algorithm.graph.GraphSpec":{"executedFeatures":["should be zero distance for an empty path","should be zero distance for any one node path","should calculate distance for a path","should return edges for a given node","should throw NPE for incorrect path"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":47},"title":"Generic Graph","narrative":"A generic implementation of Graph structure"},"lv.id.jc.algorithm.graph.DijkstrasAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph","should find a route for a medium graph","should find a route for a simple graph","should return an empty path if can't find a route","should thrown NPE for an empty graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":46},"title":"Dijkstra's Algorithm","narrative":"Dijkstra's algorithm is an algorithm for finding the fastest paths between nodes in a graph"},"lv.id.jc.algorithm.graph.DijkstrasAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph","should find a route for a medium graph","should find a route for a simple graph","should return an empty path if can't find a route","should thrown NPE for an empty graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":1,"totalFeatures":5,"passed":1,"successRate":1.0,"time":29},"title":"Dijkstra's Algorithm","narrative":"Dijkstra's algorithm is an algorithm for finding the fastest paths between nodes in a graph"},"lv.id.jc.algorithm.graph.DijkstrasAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph","should find a route for a medium graph","should find a route for a simple graph","should return an empty path if can't find a route","should thrown NPE for an empty graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":1,"totalFeatures":5,"passed":1,"successRate":1.0,"time":32},"title":"Dijkstra's Algorithm","narrative":"Dijkstra's algorithm is an algorithm for finding the fastest paths between nodes in a graph"},"lv.id.jc.algorithm.graph.BreadthFirstSearchSpec":{"executedFeatures":["should find a route for complex graph","should find a route for simple graph","should return an empty path if can't find a route","should thrown an exception for an empty graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":4,"totalFeatures":4,"passed":4,"successRate":1.0,"time":37},"title":"Breadth First Search Algorithm","narrative":"Breadth First Search algorithm for finding the shortest paths between nodes in a graph"},"lv.id.jc.algorithm.graph.DijkstrasAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph","should find a route for a medium graph","should find a route for a simple graph","should return an empty path if can't find a route","should thrown NPE for an empty graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":15},"title":"Dijkstra's Algorithm","narrative":"Dijkstra's algorithm is an algorithm for finding the fastest paths between nodes in a graph"},"lv.id.jc.algorithm.graph.GraphSpec":{"executedFeatures":["should be zero distance for an empty path","should be zero distance for any one node path","should calculate distance for a path","should return edges for a given node","should throw NPE for incorrect path"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":32},"title":"Generic Graph","narrative":"A generic implementation of Graph structure"},"lv.id.jc.algorithm.graph.SearchAlgorithmsSpec":{"executedFeatures":["should find a route for a complex graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":1,"totalFeatures":1,"passed":1,"successRate":1.0,"time":5},"title":"Comparison of two algorithms","narrative":""},"lv.id.jc.algorithm.graph.DijkstrasAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph","should find a route for a medium graph","should find a route for a simple graph","should return an empty path if can't find a route","should thrown NPE for an empty graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":44},"title":"Dijkstra's Algorithm","narrative":"Dijkstra's algorithm is an algorithm for finding \nthe fastest paths between nodes in a graph"},"lv.id.jc.algorithm.graph.DijkstrasAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph","should find a route for a medium graph","should find a route for a simple graph","should return an empty path if can't find a route","should thrown NPE for an empty graph"],"ignoredFeatures":[],"stats":{"failures":1,"errors":0,"skipped":0,"totalRuns":1,"totalFeatures":5,"passed":0,"successRate":0.0,"time":37},"title":"Dijkstra's Algorithm","narrative":"Dijkstra's algorithm is an algorithm for finding \nthe fastest paths between nodes in a graph"}}
0 commit comments