Skip to content

Commit 3bf7324

Browse files
committed
Merge branch 'dev' into model_parser
2 parents de53c16 + 4ad4479 commit 3bf7324

File tree

2 files changed

+16
-103
lines changed

2 files changed

+16
-103
lines changed

test/test_two_qubits.py

+16-103
Original file line numberDiff line numberDiff line change
@@ -3,6 +3,7 @@
33
"""
44

55
import copy
6+
import pickle
67
import numpy as np
78

89
# Main C3 objects
@@ -445,122 +446,34 @@
445446

446447
opt.set_exp(exp)
447448

448-
449-
def run_optim() -> float:
450-
"""
451-
Perform the optimization run
452-
"""
453-
opt.optimize_controls()
454-
return (opt.current_best_goal)
455-
449+
with open("test/two_qubit_data.pickle", "rb") as filename:
450+
test_data = pickle.load(filename)
456451

457452
gen_signal = generator.generate_signals(X90p_q1)
458453
ts = gen_signal["d1"]["ts"]
454+
hdrift, hks = model.get_Hamiltonians()
455+
propagator = exp.propagation(gen_signal, "X90p:Id")
459456

460457

461-
def test_signals_max() -> None:
462-
"""
463-
Test if the generated signals are correct at the first and last sample and at sample #12.
464-
"""
465-
assert np.max(gen_signal["d1"]["values"]) - 442864262.3882865 < 1
458+
def test_signals() -> None:
459+
for key in gen_signal:
460+
assert (gen_signal[key]["values"].numpy() - test_data["signal"][key]["values"].numpy() < 1).all()
461+
assert (ts.numpy() == test_data["ts"].numpy()).all()
466462

467463

468-
def test_signals_at_0() -> None:
469-
"""
470-
Test if the generated signals are correct at the first and last sample and at sample #12.
471-
"""
472-
assert gen_signal["d1"]["values"][0] < 1
473-
474-
475-
def test_signals_at_12() -> None:
476-
"""
477-
Test if the generated signals are correct at the first and last sample and at sample #12.
478-
"""
479-
assert gen_signal["d1"]["values"][12] - -18838613.771749068 < 1
480-
481-
482-
def test_signals_at_end() -> None:
483-
"""
484-
Test if the generated signals are correct at the first and last sample and at sample #12.
485-
"""
486-
assert gen_signal["d1"]["values"][-1] - 47702706.02427947 < 1
487-
488-
489-
def test_ts_at_0() -> None:
490-
"""
491-
Test if the generated signals are correct at the first and last sample and at sample #12.
492-
"""
493-
assert ts[0] == 5e-12
494-
495-
496-
def test_test_ts_at_12() -> None:
497-
"""
498-
Test if the generated signals are correct at the first and last sample and at sample #12.
499-
"""
500-
assert ts[12] == 1.25e-10
501-
502-
503-
def test_ts_at_end() -> None:
504-
"""
505-
Test if the generated signals are correct at the first and last sample and at sample #12.
506-
"""
507-
assert ts[-1] == 6.995e-09
508-
509-
510-
def test_hamiltonian_of_t() -> None:
511-
cflds_t = gen_signal["d1"]["values"][16]
512-
hdrift, hks = model.get_Hamiltonians()
513-
hamiltonian = hdrift.numpy() + cflds_t.numpy() * hks["d1"].numpy()
514-
precomp_hamiltonian = [
515-
[-2.37105674e+05+0.j, -4.39488626e+05+0.j, 6.42557156e-09+0.j,
516-
-1.39929598e+07+0.j, 4.80420449e-08+0.j, -5.12932000e+01+0.j,
517-
-9.18583639e-10+0.j, -7.52868617e+02+0.j, -4.60493681e-10+0.j,],
518-
[-4.39488626e+05+0.j, 3.51895367e+10+0.j, -1.05404930e+06+0.j,
519-
-4.21166702e-06+0.j, -1.39659734e+07+0.j, -3.38001933e-07+0.j,
520-
-1.70280246e+05+0.j, -3.42845091e-07+0.j, -1.12262365e+03+0.j,],
521-
[ 8.21276864e-09+0.j, -1.05404930e+06+0.j, 6.88776096e+10+0.j,
522-
-2.87659692e+01+0.j, -4.35040944e-06+0.j, -1.40273221e+07+0.j,
523-
6.11788641e-06+0.j, -5.67966729e+05+0.j, -5.92691374e-06+0.j,],
524-
[-1.39929598e+07+0.j, -4.06274727e-06+0.j, -2.87659692e+01+0.j,
525-
3.14112585e+10+0.j, -1.97916311e+05+0.j, -2.68973468e-05+0.j,
526-
-1.97926130e+07+0.j, -5.91563241e-06+0.j, -1.02890811e+02+0.j,],
527-
[ 5.04042505e-08+0.j, -1.39659734e+07+0.j, -1.84797479e-06+0.j,
528-
-1.97916311e+05+0.j, 6.65933163e+10+0.j, -2.45595202e+05+0.j,
529-
1.03870858e-05+0.j, -1.97587093e+07+0.j, 1.03713136e-05+0.j,],
530-
[-5.12932000e+01+0.j, -4.57618676e-07+0.j, -1.40273221e+07+0.j,
531-
-2.68926902e-05+0.j, -2.45595202e+05+0.j, 1.00297674e+11+0.j,
532-
3.15118982e+04+0.j, 7.62930650e-06+0.j, -1.97559869e+07+0.j,],
533-
[-1.21110840e-09+0.j, -1.70280246e+05+0.j, 6.09999393e-06+0.j,
534-
-1.97926130e+07+0.j, 1.07057873e-05+0.j, 3.15118982e+04+0.j,
535-
6.15061801e+10+0.j, 6.36236697e+05+0.j, -2.25524516e-05+0.j,],
536-
[-7.52868617e+02+0.j, -3.44707736e-07+0.j, -5.67966729e+05+0.j,
537-
-5.93053357e-06+0.j, -1.97587093e+07+0.j, 8.58298081e-06+0.j,
538-
6.36236697e+05+0.j, 9.66811548e+10+0.j, 1.30140463e+06+0.j,],
539-
[-5.01826729e-10+0.j, -1.12262365e+03+0.j, -5.92318845e-06+0.j,
540-
-1.02890811e+02+0.j, 1.04309182e-05+0.j, -1.97559869e+07+0.j,
541-
-2.25571082e-05+0.j, 1.30140463e+06+0.j, 1.30377086e+11+0.j,],
542-
]
543-
544-
assert (hamiltonian - precomp_hamiltonian < 1e-15).any()
464+
def test_hamiltonians() -> None:
465+
assert (hdrift.numpy() == test_data["hdrift"].numpy()).any()
466+
for key in hks:
467+
assert (hks[key].numpy() == test_data["hks"][key].numpy()).all()
545468

546469

547470
def test_propagation() -> None:
548-
propagator = exp.propagation(gen_signal, "X90p:Id")
549-
precomputed = np.array(
550-
[
551-
[-5.42470209e-02 - 7.55118401e-01j, 1.31475007e-04 - 1.66893081e-04j,
552-
5.81482026e-08 + 4.56344704e-08j, 6.51945328e-01 - 3.21728860e-02j,
553-
1.20669716e-04 + 5.09331324e-05j, 3.19775048e-08 + 1.04614907e-07j,
554-
-9.41458634e-03 - 2.63990622e-02j, 3.55609615e-05 - 2.18958182e-04j,
555-
-6.42952047e-07 - 1.07156481e-06j]
556-
]
557-
)
558-
559-
assert ((propagator.numpy()[3] - precomputed) < 1e-8).all()
471+
assert (propagator.numpy() - test_data["propagator"].numpy() < 1e-12).all()
560472

561473

562474
def test_two_qubits() -> None:
563475
"""
564476
check if optimization result is below 1e-2
565477
"""
566-
assert run_optim() < 0.01
478+
opt.optimize_controls()
479+
assert opt.current_best_goal < 0.01

test/two_qubit_data.pickle

16.5 KB
Binary file not shown.

0 commit comments

Comments
 (0)