-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathtest_noise.py
138 lines (117 loc) · 4.42 KB
/
test_noise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import os
import tempfile
import pytest
import pickle
import numpy as np
# Main C3 objects
from c3.optimizers.optimizer import TensorBoardLogger
from c3.experiment import Experiment as Exp
# Libs and helpers
import c3.libraries.algorithms as algorithms
import c3.libraries.fidelities as fidelities
from c3.optimizers.optimalcontrol_robust import OptimalControlRobust
logdir = os.path.join(tempfile.TemporaryDirectory().name, "c3logs")
gateset_opt_map = [
[
("rx90p", "d1", "gauss", "amp"),
],
[
("rx90p", "d1", "gauss", "freq_offset"),
],
[
("rx90p", "d1", "gauss", "xy_angle"),
],
]
@pytest.mark.slow
@pytest.mark.optimizers
@pytest.mark.integration
# @pytest.mark.skip(reason="Data needs to be updated")
def test_c1_robust():
exp = Exp()
exp.read_config("test/noise_exp_1.hjson")
exp.set_opt_gates(["rx90p"])
pmap = exp.pmap
pmap.set_opt_map(gateset_opt_map)
noise_map = [[np.linspace(-0.1, 0.1, 5), [("dc_offset", "offset_amp")]]]
opt = OptimalControlRobust(
dir_path=logdir,
fid_func=fidelities.unitary_infid_set,
fid_subspace=["Q1"],
pmap=pmap,
noise_map=noise_map,
algorithm=algorithms.lbfgs,
options={"maxfun": 2},
run_name="better_X90_tf_sgd",
logger=[TensorBoardLogger()],
)
opt.set_exp(exp)
opt.optimize_controls()
assert opt.optim_status["goal"] < 0.1
assert opt.current_best_goal < 0.1
assert np.all(np.abs(opt.optim_status["gradient"]) > 0)
assert np.all(np.abs(opt.optim_status["gradient_std"]) > 0)
assert np.abs(opt.optim_status["goal_std"]) > 0
with open("test/c1_robust.pickle", "rb") as f:
data = pickle.load(f)
data["c1_robust_lbfgs"] = opt.optim_status
for k in ["goal", "goals_individual", "goal_std", "gradient", "gradient_std"]:
desired = data["c1_robust_lbfgs"][k]
np.testing.assert_allclose(opt.optim_status[k], desired)
@pytest.mark.slow
@pytest.mark.integration
def test_noise_devices():
exp = Exp()
exp.read_config("test/noise_exp_1.hjson")
exp.set_opt_gates(["rx90p"])
pmap = exp.pmap
pmap.set_opt_map(gateset_opt_map)
exp2 = Exp()
exp2.read_config("test/noise_exp_2.hjson")
exp.compute_propagators()
fidelity0 = fidelities.average_infid_set(
exp.propagators, pmap.instructions, index=[0], dims=exp.pmap.model.dims
)
noise_map = [
[("pink_noise", "noise_amp")],
[("dc_noise", "noise_amp")],
[("awg_noise", "noise_amp")],
]
for i in range(len(noise_map) + 1):
params = np.zeros(len(noise_map))
if i < len(noise_map):
params[i] = 0.1
exp2.pmap.set_parameters(params, noise_map)
exp2.compute_propagators()
fidelityA = fidelities.average_infid_set(
exp2.propagators, pmap.instructions, index=[0], dims=exp.pmap.model.dims
)
pink_noiseA = exp2.pmap.generator.devices["PinkNoise"].signal["noise"]
dc_noiseA = exp2.pmap.generator.devices["DCNoise"].signal["noise"]
awg_noiseA = exp2.pmap.generator.devices["AWGNoise"].signal["noise-inphase"]
exp2.compute_propagators()
fidelityB = fidelities.average_infid_set(
exp2.propagators, pmap.instructions, index=[0], dims=exp.pmap.model.dims
)
pink_noiseB = exp2.pmap.generator.devices["PinkNoise"].signal["noise"]
dc_noiseB = exp2.pmap.generator.devices["DCNoise"].signal["noise"]
awg_noiseB = exp2.pmap.generator.devices["AWGNoise"].signal["noise-inphase"]
assert np.std(pink_noiseA) >= 0.05 * params[0]
assert np.std(pink_noiseA) < 10 * params[0] + 1e-15
if params[0] > 1e-15:
assert np.median(np.abs(pink_noiseA - pink_noiseB) > 1e-10)
if params[1] > 1e-15:
assert np.abs(np.mean(dc_noiseA - dc_noiseB)) > 1e-6
assert np.abs(np.mean(dc_noiseA - dc_noiseB)) < 10 * params[1]
else:
assert np.max(dc_noiseA - dc_noiseB) < 1e-15
assert np.std(dc_noiseA) < 1e-15
assert np.std(awg_noiseA) >= 0.05 * params[2]
assert np.std(awg_noiseA) < 10 * params[2] + 1e-15
if params[2] > 1e-15:
assert np.mean(np.abs(awg_noiseA - awg_noiseB) > 1e-10)
if np.max(params) > 0:
assert fidelityA != fidelityB
assert fidelity0 != fidelityB
else:
assert fidelityA == fidelityB
assert fidelity0 == fidelityB