-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathsingle_qubit_experiment.py
171 lines (159 loc) · 5.06 KB
/
single_qubit_experiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import copy
import numpy as np
from c3.model import Model as Mdl
from c3.c3objs import Quantity as Qty
from c3.parametermap import ParameterMap as PMap
from c3.experiment import Experiment as Exp
from c3.generator.generator import Generator as Gnr
import c3.signal.gates as gates
import c3.libraries.chip as chip
import c3.generator.devices as devices
import c3.libraries.hamiltonians as hamiltonians
import c3.signal.pulse as pulse
import c3.libraries.envelopes as envelopes
def create_experiment():
lindblad = False
dressed = True
qubit_lvls = 3
freq = 5.001234e9
anhar = -209.8765e6
qubit_temp = 0
t_final = 7e-9 # Time for single qubit gates
sim_res = 100e9
awg_res = 2e9
sideband = 50e6
lo_freq = 5e9 + sideband
# ### MAKE MODEL
q1 = chip.Qubit(
name="Q1",
desc="Qubit 1",
freq=Qty(
value=freq,
min_val=4.995e9,
max_val=5.005e9,
unit="Hz 2pi",
),
anhar=Qty(
value=anhar,
min_val=-380e6,
max_val=-120e6,
unit="Hz 2pi",
),
hilbert_dim=qubit_lvls,
temp=Qty(value=qubit_temp, min_val=0.0, max_val=0.12, unit="K"),
)
drive = chip.Drive(
name="d1",
desc="Drive 1",
comment="Drive line 1 on qubit 1",
connected=["Q1"],
hamiltonian_func=hamiltonians.x_drive,
)
phys_components = [q1]
line_components = [drive]
model = Mdl(phys_components, line_components)
model.set_lindbladian(lindblad)
model.set_dressed(dressed)
# ### MAKE GENERATOR
generator = Gnr(
devices={
"LO": devices.LO(name="lo", resolution=sim_res, outputs=1),
"AWG": devices.AWG(name="awg", resolution=awg_res, outputs=1),
"DigitalToAnalog": devices.DigitalToAnalog(
name="dac", resolution=sim_res, inputs=1, outputs=1
),
"Mixer": devices.Mixer(name="mixer", inputs=2, outputs=1),
"VoltsToHertz": devices.VoltsToHertz(
name="v_to_hz",
V_to_Hz=Qty(value=1e9, min_val=0.9e9, max_val=1.1e9, unit="Hz/V"),
inputs=1,
outputs=1,
),
},
chains={
"d1": {
"LO": [],
"AWG": [],
"DigitalToAnalog": ["AWG"],
"Mixer": ["LO", "DigitalToAnalog"],
"VoltsToHertz": ["Mixer"],
}
},
)
# ### MAKE GATESET
gauss_params_single = {
"amp": Qty(value=0.45, min_val=0.35, max_val=0.6, unit="V"),
"t_final": Qty(
value=t_final, min_val=0.5 * t_final, max_val=1.5 * t_final, unit="s"
),
"sigma": Qty(
value=t_final / 4, min_val=t_final / 8, max_val=t_final / 2, unit="s"
),
"xy_angle": Qty(
value=0.0, min_val=-0.5 * np.pi, max_val=2.5 * np.pi, unit="rad"
),
"freq_offset": Qty(
value=-sideband - 0.5e6,
min_val=-60 * 1e6,
max_val=-40 * 1e6,
unit="Hz 2pi",
),
"delta": Qty(value=-1, min_val=-5, max_val=3, unit=""),
}
gauss_env_single = pulse.EnvelopeDrag(
name="gauss",
desc="Gaussian comp for single-qubit gates",
params=gauss_params_single,
shape=envelopes.gaussian_nonorm,
)
nodrive_env = pulse.Envelope(
name="no_drive",
params={
"t_final": Qty(
value=t_final, min_val=0.5 * t_final, max_val=1.5 * t_final, unit="s"
)
},
shape=envelopes.no_drive,
)
carrier_parameters = {
"freq": Qty(
value=lo_freq,
min_val=4.5e9,
max_val=6e9,
unit="Hz 2pi",
),
"framechange": Qty(value=0.0, min_val=-np.pi, max_val=3 * np.pi, unit="rad"),
}
carr = pulse.Carrier(
name="carrier",
desc="Frequency of the local oscillator",
params=carrier_parameters,
)
rx90p = gates.Instruction(
name="rx90p", t_start=0.0, t_end=t_final, channels=["d1"], targets=[0]
)
QId = gates.Instruction(
name="id", t_start=0.0, t_end=t_final, channels=["d1"], targets=[0]
)
rx90p.add_component(gauss_env_single, "d1")
rx90p.add_component(carr, "d1")
QId.add_component(nodrive_env, "d1")
QId.add_component(copy.deepcopy(carr), "d1")
QId.comps["d1"]["carrier"].params["framechange"].set_value(
(-sideband * t_final) % (2 * np.pi)
)
ry90p = copy.deepcopy(rx90p)
ry90p.name = "ry90p"
rx90m = copy.deepcopy(rx90p)
rx90m.name = "rx90m"
ry90m = copy.deepcopy(rx90p)
ry90m.name = "ry90m"
ry90p.comps["d1"]["gauss"].params["xy_angle"].set_value(0.5 * np.pi)
rx90m.comps["d1"]["gauss"].params["xy_angle"].set_value(np.pi)
ry90m.comps["d1"]["gauss"].params["xy_angle"].set_value(1.5 * np.pi)
parameter_map = PMap(
instructions=[QId, rx90p, ry90p, rx90m, ry90m], model=model, generator=generator
)
# ### MAKE EXPERIMENT
exp = Exp(pmap=parameter_map)
return exp