-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathtest_two_qubits.py
379 lines (326 loc) · 10.8 KB
/
test_two_qubits.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
"""
integration testing module for C1 optimization through two-qubits example
"""
import os
import tempfile
import copy
import pickle
import numpy as np
import pytest
from numpy.testing import assert_array_almost_equal as almost_equal
# Main C3 objects
from c3.c3objs import Quantity as Qty
from c3.parametermap import ParameterMap as Pmap
from c3.experiment import Experiment as Exp
from c3.system.model import Model as Mdl
from c3.generator.generator import Generator as Gnr
# Building blocks
import c3.generator.devices as devices
import c3.system.chip as chip
import c3.signal.pulse as pulse
import c3.signal.gates as gates
import c3.system.tasks as tasks
# Libs and helpers
import c3.libraries.algorithms as algorithms
import c3.libraries.hamiltonians as hamiltonians
import c3.libraries.fidelities as fidelities
import c3.libraries.envelopes as envelopes
from c3.optimizers.c1 import C1
logdir = os.path.join(tempfile.TemporaryDirectory().name, "c3logs")
qubit_lvls = 3
freq_q1 = 5e9
anhar_q1 = -210e6
t1_q1 = 27e-6
t2star_q1 = 39e-6
qubit_temp = 50e-3
q1 = chip.Qubit(
name="Q1",
desc="Qubit 1",
freq=Qty(value=freq_q1, min_val=4.995e9, max_val=5.005e9, unit="Hz 2pi"),
anhar=Qty(value=anhar_q1, min_val=-380e6, max_val=-120e6, unit="Hz 2pi"),
hilbert_dim=qubit_lvls,
t1=Qty(value=t1_q1, min_val=1e-6, max_val=90e-6, unit="s"),
t2star=Qty(value=t2star_q1, min_val=10e-6, max_val=90e-3, unit="s"),
temp=Qty(value=qubit_temp, min_val=0.0, max_val=0.12, unit="K"),
)
freq_q2 = 5.6e9
anhar_q2 = -240e6
t1_q2 = 23e-6
t2star_q2 = 31e-6
q2 = chip.Qubit(
name="Q2",
desc="Qubit 2",
freq=Qty(value=freq_q2, min_val=5.595e9, max_val=5.605e9, unit="Hz 2pi"),
anhar=Qty(value=anhar_q2, min_val=-380e6, max_val=-120e6, unit="Hz 2pi"),
hilbert_dim=qubit_lvls,
t1=Qty(value=t1_q2, min_val=1e-6, max_val=90e-6, unit="s"),
t2star=Qty(value=t2star_q2, min_val=10e-6, max_val=90e-6, unit="s"),
temp=Qty(value=qubit_temp, min_val=0.0, max_val=0.12, unit="K"),
)
coupling_strength = 20e6
q1q2 = chip.Coupling(
name="Q1-Q2",
desc="coupling",
comment="Coupling qubit 1 to qubit 2",
connected=["Q1", "Q2"],
strength=Qty(
value=coupling_strength, min_val=-1 * 1e3, max_val=200e6, unit="Hz 2pi"
),
hamiltonian_func=hamiltonians.int_XX,
)
drive = chip.Drive(
name="d1",
desc="Drive 1",
comment="Drive line 1 on qubit 1",
connected=["Q1"],
hamiltonian_func=hamiltonians.x_drive,
)
drive2 = chip.Drive(
name="d2",
desc="Drive 2",
comment="Drive line 2 on qubit 2",
connected=["Q2"],
hamiltonian_func=hamiltonians.x_drive,
)
m00_q1 = 0.97 # Prop to read qubit 1 state 0 as 0
m01_q1 = 0.04 # Prop to read qubit 1 state 0 as 1
m00_q2 = 0.96 # Prop to read qubit 2 state 0 as 0
m01_q2 = 0.05 # Prop to read qubit 2 state 0 as 1
one_zeros = np.array([0] * qubit_lvls)
zero_ones = np.array([1] * qubit_lvls)
one_zeros[0] = 1
zero_ones[0] = 0
val1 = one_zeros * m00_q1 + zero_ones * m01_q1
val2 = one_zeros * m00_q2 + zero_ones * m01_q2
min_val = one_zeros * 0.8 + zero_ones * 0.0
max_val = one_zeros * 1.0 + zero_ones * 0.2
confusion_row1 = Qty(value=val1, min_val=min_val, max_val=max_val, unit="")
confusion_row2 = Qty(value=val2, min_val=min_val, max_val=max_val, unit="")
conf_matrix = tasks.ConfusionMatrix(Q1=confusion_row1, Q2=confusion_row2)
init_temp = 50e-3
init_ground = tasks.InitialiseGround(
init_temp=Qty(value=init_temp, min_val=-0.001, max_val=0.22, unit="K")
)
model = Mdl(
[q1, q2], # Individual, self-contained components
[drive, drive2, q1q2], # Interactions between components
[conf_matrix, init_ground], # SPAM processing
)
model.set_lindbladian(False)
model.set_dressed(True)
sim_res = 100e9 # Resolution for numerical simulation
awg_res = 2e9 # Realistic, limited resolution of an AWG
generator = Gnr(
devices={
"LO": devices.LO(name="lo", resolution=sim_res, outputs=1),
"AWG": devices.AWG(name="awg", resolution=awg_res, outputs=1),
"DigitalToAnalog": devices.DigitalToAnalog(
name="dac", resolution=sim_res, inputs=1, outputs=1
),
"Response": devices.Response(
name="resp",
rise_time=Qty(value=0.3e-9, min_val=0.05e-9, max_val=0.6e-9, unit="s"),
resolution=sim_res,
inputs=1,
outputs=1,
),
"Mixer": devices.Mixer(name="mixer", inputs=2, outputs=1),
"VoltsToHertz": devices.VoltsToHertz(
name="v_to_hz",
V_to_Hz=Qty(value=1e9, min_val=0.9e9, max_val=1.1e9, unit="Hz/V"),
inputs=1,
outputs=1,
),
},
chains={
"d1": ["LO", "AWG", "DigitalToAnalog", "Response", "Mixer", "VoltsToHertz"],
"d2": ["LO", "AWG", "DigitalToAnalog", "Response", "Mixer", "VoltsToHertz"],
},
)
t_final = 7e-9 # Time for single qubit gates
sideband = 50e6
gauss_params_single = {
"amp": Qty(value=0.5, min_val=0.4, max_val=0.6, unit="V"),
"t_final": Qty(
value=t_final, min_val=0.5 * t_final, max_val=1.5 * t_final, unit="s"
),
"sigma": Qty(value=t_final / 4, min_val=t_final / 8, max_val=t_final / 2, unit="s"),
"xy_angle": Qty(value=0.0, min_val=-0.5 * np.pi, max_val=2.5 * np.pi, unit="rad"),
"freq_offset": Qty(
value=-sideband - 3e6, min_val=-56 * 1e6, max_val=-52 * 1e6, unit="Hz 2pi"
),
"delta": Qty(value=-1, min_val=-5, max_val=3, unit=""),
}
gauss_env_single = pulse.Envelope(
name="gauss",
desc="Gaussian comp for single-qubit gates",
params=gauss_params_single,
shape=envelopes.gaussian_nonorm,
)
nodrive_env = pulse.Envelope(
name="no_drive",
params={
"t_final": Qty(
value=t_final, min_val=0.5 * t_final, max_val=1.5 * t_final, unit="s"
)
},
shape=envelopes.no_drive,
)
lo_freq_q1 = 5e9 + sideband
carrier_parameters = {
"freq": Qty(value=lo_freq_q1, min_val=4.5e9, max_val=6e9, unit="Hz 2pi"),
"framechange": Qty(value=0.0, min_val=-np.pi, max_val=3 * np.pi, unit="rad"),
}
carr = pulse.Carrier(
name="carrier", desc="Frequency of the local oscillator", params=carrier_parameters
)
lo_freq_q2 = 5.6e9 + sideband
carr_2 = copy.deepcopy(carr)
carr_2.params["freq"].set_value(lo_freq_q2)
rx90p_q1 = gates.Instruction(
name="rx90p",
targets=[0],
t_start=0.0,
t_end=t_final,
channels=["d1", "d2"],
params={"use_t_before": True},
)
rx90p_q2 = gates.Instruction(
name="rx90p",
targets=[1],
t_start=0.0,
t_end=t_final,
channels=["d1", "d2"],
params={"use_t_before": True},
)
QId_q1 = gates.Instruction(
name="id",
targets=[0],
t_start=0.0,
t_end=t_final,
channels=["d1", "d2"],
params={"use_t_before": True},
)
QId_q2 = gates.Instruction(
name="id",
targets=[1],
t_start=0.0,
t_end=t_final,
channels=["d1", "d2"],
params={"use_t_before": True},
)
rx90p_q1.add_component(gauss_env_single, "d1")
rx90p_q1.add_component(carr, "d1")
rx90p_q1.add_component(nodrive_env, "d2")
rx90p_q1.add_component(copy.deepcopy(carr_2), "d2")
rx90p_q1.comps["d2"]["carrier"].params["framechange"].set_value(
(-sideband * t_final) * 2 * np.pi % (2 * np.pi)
)
rx90p_q2.add_component(copy.deepcopy(gauss_env_single), "d2")
rx90p_q2.add_component(carr_2, "d2")
rx90p_q2.add_component(nodrive_env, "d1")
rx90p_q2.add_component(copy.deepcopy(carr), "d1")
rx90p_q2.comps["d1"]["carrier"].params["framechange"].set_value(
(-sideband * t_final) * 2 * np.pi % (2 * np.pi)
)
QId_q1.add_component(nodrive_env, "d1")
QId_q1.add_component(copy.deepcopy(carr), "d1")
QId_q1.add_component(nodrive_env, "d2")
QId_q1.add_component(copy.deepcopy(carr_2), "d2")
QId_q2.add_component(copy.deepcopy(nodrive_env), "d2")
QId_q2.add_component(copy.deepcopy(carr_2), "d2")
QId_q2.add_component(nodrive_env, "d1")
QId_q2.add_component(copy.deepcopy(carr), "d1")
Y90p_q1 = copy.deepcopy(rx90p_q1)
Y90p_q1.name = "ry90p"
X90m_q1 = copy.deepcopy(rx90p_q1)
X90m_q1.name = "rx90m"
Y90m_q1 = copy.deepcopy(rx90p_q1)
Y90m_q1.name = "ry90m"
Y90p_q1.comps["d1"]["gauss"].params["xy_angle"].set_value(0.5 * np.pi)
X90m_q1.comps["d1"]["gauss"].params["xy_angle"].set_value(np.pi)
Y90m_q1.comps["d1"]["gauss"].params["xy_angle"].set_value(1.5 * np.pi)
single_q_gates = [QId_q1, rx90p_q1, Y90p_q1, X90m_q1, Y90m_q1]
Y90p_q2 = copy.deepcopy(rx90p_q2)
Y90p_q2.name = "ry90p"
X90m_q2 = copy.deepcopy(rx90p_q2)
X90m_q2.name = "rx90m"
Y90m_q2 = copy.deepcopy(rx90p_q2)
Y90m_q2.name = "ry90m"
Y90p_q2.comps["d2"]["gauss"].params["xy_angle"].set_value(0.5 * np.pi)
X90m_q2.comps["d2"]["gauss"].params["xy_angle"].set_value(np.pi)
Y90m_q2.comps["d2"]["gauss"].params["xy_angle"].set_value(1.5 * np.pi)
single_q_gates.extend([QId_q2, rx90p_q2, Y90p_q2, X90m_q2, Y90m_q2])
pmap = Pmap(single_q_gates, generator, model)
exp = Exp(pmap)
generator.devices["AWG"].enable_drag_2()
exp.set_opt_gates(["rx90p[0]"])
gateset_opt_map = [
[
("rx90p[0]", "d1", "gauss", "amp"),
],
[
("rx90p[0]", "d1", "gauss", "freq_offset"),
],
[
("rx90p[0]", "d1", "gauss", "xy_angle"),
],
[
("rx90p[0]", "d1", "gauss", "delta"),
],
]
pmap.set_opt_map(gateset_opt_map)
opt = C1(
dir_path=logdir,
fid_func=fidelities.average_infid_set,
fid_subspace=["Q1", "Q2"],
pmap=pmap,
algorithm=algorithms.tf_sgd,
options={"maxfun": 2},
run_name="better_X90_tf_sgd",
)
opt.set_exp(exp)
with open("test/two_qubit_data.pickle", "rb") as filename:
test_data = pickle.load(filename)
gen_signal = generator.generate_signals(pmap.instructions["rx90p[0]"])
ts = gen_signal["d1"]["ts"]
hdrift, hks = model.get_Hamiltonians()
propagator = exp.propagation(gen_signal, "rx90p[0]")
def test_signals() -> None:
np.testing.assert_allclose(ts, test_data["ts"])
np.testing.assert_allclose(
actual=gen_signal["d1"]["values"].numpy(),
desired=test_data["signal"]["d1"]["values"].numpy(),
)
def test_hamiltonians() -> None:
assert (hdrift.numpy() - test_data["hdrift"].numpy() < 1).any()
for key in hks:
almost_equal(hks[key], test_data["hks"][key])
def test_propagation() -> None:
almost_equal(propagator, test_data["propagator"])
@pytest.mark.slow
@pytest.mark.tensorflow
@pytest.mark.optimizers
@pytest.mark.integration
def test_optim_tf_sgd() -> None:
"""
check if optimization result is below 1e-2
"""
opt.optimize_controls()
assert opt.current_best_goal < 0.01
@pytest.mark.optimizers
@pytest.mark.slow
@pytest.mark.integration
def test_optim_lbfgs() -> None:
lbfgs_opt = C1(
dir_path=logdir,
fid_func=fidelities.average_infid_set,
fid_subspace=["Q1", "Q2"],
pmap=pmap,
algorithm=algorithms.lbfgs,
options={"maxfun": 2},
run_name="better_X90_lbfgs",
)
lbfgs_opt.set_exp(exp)
lbfgs_opt.optimize_controls()
assert lbfgs_opt.current_best_goal < 0.01