188
188
189
189
190
190
< div class ="version ">
191
- master (1.9.0a0+git715835c )
191
+ master (1.9.0a0+gitcc88ac8 )
192
192
</ div >
193
193
194
194
@@ -407,7 +407,7 @@ <h1>Source code for torch</h1><div class="highlight"><pre>
407
407
< span class ="k "> if</ span > < span class ="n "> sys</ span > < span class ="o "> .</ span > < span class ="n "> executable</ span > < span class ="o "> ==</ span > < span class ="s1 "> 'torch_deploy'</ span > < span class ="p "> :</ span >
408
408
< span class ="n "> __version__</ span > < span class ="o "> =</ span > < span class ="s2 "> "torch-deploy-1.8"</ span >
409
409
< span class ="k "> else</ span > < span class ="p "> :</ span >
410
- < span class ="kn "> from</ span > < span class ="nn "> .version</ span > < span class ="kn "> import</ span > < span class ="n "> __version__</ span >
410
+ < span class ="kn "> from</ span > < span class ="nn "> .version</ span > < span class ="kn "> import</ span > < span class ="n "> __version__</ span > < span class =" k " > as </ span > < span class =" n " > __version__ </ span >
411
411
< span class ="kn "> from</ span > < span class ="nn "> ._six</ span > < span class ="kn "> import</ span > < span class ="n "> string_classes</ span > < span class ="k "> as</ span > < span class ="n "> _string_classes</ span >
412
412
413
413
< span class ="kn "> from</ span > < span class ="nn "> typing</ span > < span class ="kn "> import</ span > < span class ="n "> Set</ span > < span class ="p "> ,</ span > < span class ="n "> Type</ span > < span class ="p "> ,</ span > < span class ="n "> TYPE_CHECKING</ span >
@@ -611,6 +611,19 @@ <h1>Source code for torch</h1><div class="highlight"><pre>
611
611
< span class ="k "> if</ span > < span class ="n "> name</ span > < span class ="p "> [</ span > < span class ="mi "> 0</ span > < span class ="p "> ]</ span > < span class ="o "> !=</ span > < span class ="s1 "> '_'</ span > < span class ="ow "> and</ span >
612
612
< span class ="ow "> not</ span > < span class ="n "> name</ span > < span class ="o "> .</ span > < span class ="n "> endswith</ span > < span class ="p "> (</ span > < span class ="s1 "> 'Base'</ span > < span class ="p "> )]</ span >
613
613
614
+ < span class ="k "> if</ span > < span class ="ow "> not</ span > < span class ="n "> TYPE_CHECKING</ span > < span class ="p "> :</ span >
615
+ < span class ="c1 "> # issue 38137 and python issue 43367. Submodules of a C extension are</ span >
616
+ < span class ="c1 "> # non-standard, and attributes of those submodules cannot be pickled since</ span >
617
+ < span class ="c1 "> # pickle expect to be able to import them as "from _C.sub import attr"</ span >
618
+ < span class ="c1 "> # which fails with "_C is not a package</ span >
619
+ < span class ="k "> for</ span > < span class ="n "> attr</ span > < span class ="ow "> in</ span > < span class ="nb "> dir</ span > < span class ="p "> (</ span > < span class ="n "> _C</ span > < span class ="p "> ):</ span >
620
+ < span class ="n "> candidate</ span > < span class ="o "> =</ span > < span class ="nb "> getattr</ span > < span class ="p "> (</ span > < span class ="n "> _C</ span > < span class ="p "> ,</ span > < span class ="n "> attr</ span > < span class ="p "> )</ span >
621
+ < span class ="k "> if</ span > < span class ="nb "> type</ span > < span class ="p "> (</ span > < span class ="n "> candidate</ span > < span class ="p "> )</ span > < span class ="ow "> is</ span > < span class ="nb "> type</ span > < span class ="p "> (</ span > < span class ="n "> _C</ span > < span class ="p "> ):</ span >
622
+ < span class ="c1 "> # submodule</ span >
623
+ < span class ="k "> if</ span > < span class ="sa "> f</ span > < span class ="s1 "> 'torch._C.</ span > < span class ="si "> {</ span > < span class ="n "> attr</ span > < span class ="si "> }</ span > < span class ="s1 "> '</ span > < span class ="ow "> not</ span > < span class ="ow "> in</ span > < span class ="n "> sys</ span > < span class ="o "> .</ span > < span class ="n "> modules</ span > < span class ="p "> :</ span >
624
+ < span class ="n "> sys</ span > < span class ="o "> .</ span > < span class ="n "> modules</ span > < span class ="p "> [</ span > < span class ="sa "> f</ span > < span class ="s1 "> 'torch._C.</ span > < span class ="si "> {</ span > < span class ="n "> attr</ span > < span class ="si "> }</ span > < span class ="s1 "> '</ span > < span class ="p "> ]</ span > < span class ="o "> =</ span > < span class ="n "> candidate</ span >
625
+
626
+
614
627
< span class ="c1 "> ################################################################################</ span >
615
628
< span class ="c1 "> # Define basic utilities</ span >
616
629
< span class ="c1 "> ################################################################################</ span >
@@ -997,37 +1010,45 @@ <h1>Source code for torch</h1><div class="highlight"><pre>
997
1010
< span class ="c1 "> # Import most common subpackages</ span >
998
1011
< span class ="c1 "> ################################################################################</ span >
999
1012
1000
- < span class ="kn "> import</ span > < span class ="nn "> torch.cuda</ span >
1001
- < span class ="kn "> import</ span > < span class ="nn "> torch.autograd</ span >
1002
- < span class ="kn "> from</ span > < span class ="nn "> torch.autograd</ span > < span class ="kn "> import</ span > < span class ="n "> no_grad</ span > < span class ="p "> ,</ span > < span class ="n "> enable_grad</ span > < span class ="p "> ,</ span > < span class ="n "> set_grad_enabled</ span >
1003
- < span class ="kn "> import</ span > < span class ="nn "> torch.fft</ span >
1004
- < span class ="kn "> import</ span > < span class ="nn "> torch.futures</ span >
1005
- < span class ="kn "> import</ span > < span class ="nn "> torch.nn</ span >
1013
+ < span class ="c1 "> # Use the redundant form so that type checkers know that these are a part of</ span >
1014
+ < span class ="c1 "> # the public API. The "regular" import lines are there solely for the runtime</ span >
1015
+ < span class ="c1 "> # side effect of adding to the imported module's members for other users.</ span >
1016
+
1017
+ < span class ="kn "> from</ span > < span class ="nn "> torch</ span > < span class ="kn "> import</ span > < span class ="n "> cuda</ span > < span class ="k "> as</ span > < span class ="n "> cuda</ span >
1018
+ < span class ="kn "> from</ span > < span class ="nn "> torch</ span > < span class ="kn "> import</ span > < span class ="n "> autograd</ span > < span class ="k "> as</ span > < span class ="n "> autograd</ span >
1019
+ < span class ="kn "> from</ span > < span class ="nn "> torch.autograd</ span > < span class ="kn "> import</ span > < span class ="p "> (</ span >
1020
+ < span class ="n "> no_grad</ span > < span class ="k "> as</ span > < span class ="n "> no_grad</ span > < span class ="p "> ,</ span >
1021
+ < span class ="n "> enable_grad</ span > < span class ="k "> as</ span > < span class ="n "> enable_grad</ span > < span class ="p "> ,</ span >
1022
+ < span class ="n "> set_grad_enabled</ span > < span class ="k "> as</ span > < span class ="n "> set_grad_enabled</ span > < span class ="p "> ,</ span >
1023
+ < span class ="p "> )</ span >
1024
+ < span class ="kn "> from</ span > < span class ="nn "> torch</ span > < span class ="kn "> import</ span > < span class ="n "> fft</ span > < span class ="k "> as</ span > < span class ="n "> fft</ span >
1025
+ < span class ="kn "> from</ span > < span class ="nn "> torch</ span > < span class ="kn "> import</ span > < span class ="n "> futures</ span > < span class ="k "> as</ span > < span class ="n "> futures</ span >
1026
+ < span class ="kn "> from</ span > < span class ="nn "> torch</ span > < span class ="kn "> import</ span > < span class ="n "> nn</ span > < span class ="k "> as</ span > < span class ="n "> nn</ span >
1006
1027
< span class ="kn "> import</ span > < span class ="nn "> torch.nn.intrinsic</ span >
1007
1028
< span class ="kn "> import</ span > < span class ="nn "> torch.nn.quantizable</ span >
1008
1029
< span class ="kn "> import</ span > < span class ="nn "> torch.nn.quantized</ span >
1009
- < span class ="kn "> import </ span > < span class ="nn "> torch. optim</ span >
1030
+ < span class ="kn "> from </ span > < span class ="nn "> torch</ span > < span class =" kn " > import </ span > < span class =" n " > optim </ span > < span class =" k " > as </ span > < span class =" n " > optim</ span >
1010
1031
< span class ="kn "> import</ span > < span class ="nn "> torch.optim._multi_tensor</ span >
1011
- < span class ="kn "> import </ span > < span class ="nn "> torch. multiprocessing</ span >
1012
- < span class ="kn "> import </ span > < span class ="nn "> torch. sparse</ span >
1032
+ < span class ="kn "> from </ span > < span class ="nn "> torch</ span > < span class =" kn " > import </ span > < span class =" n " > multiprocessing </ span > < span class =" k " > as </ span > < span class =" n " > multiprocessing</ span >
1033
+ < span class ="kn "> from </ span > < span class ="nn "> torch</ span > < span class =" kn " > import </ span > < span class =" n " > sparse </ span > < span class =" k " > as </ span > < span class =" n " > sparse</ span >
1013
1034
< span class ="kn "> import</ span > < span class ="nn "> torch.utils.backcompat</ span >
1014
- < span class ="kn "> import </ span > < span class ="nn "> torch. onnx</ span >
1015
- < span class ="kn "> import </ span > < span class ="nn "> torch. jit</ span >
1016
- < span class ="kn "> import </ span > < span class ="nn "> torch. linalg</ span >
1017
- < span class ="kn "> import </ span > < span class ="nn "> torch. hub</ span >
1018
- < span class ="kn "> import </ span > < span class ="nn "> torch. random</ span >
1019
- < span class ="kn "> import </ span > < span class ="nn "> torch. distributions</ span >
1020
- < span class ="kn "> import </ span > < span class ="nn "> torch. testing</ span >
1035
+ < span class ="kn "> from </ span > < span class ="nn "> torch</ span > < span class =" kn " > import </ span > < span class =" n " > onnx </ span > < span class =" k " > as </ span > < span class =" n " > onnx</ span >
1036
+ < span class ="kn "> from </ span > < span class ="nn "> torch</ span > < span class =" kn " > import </ span > < span class =" n " > jit </ span > < span class =" k " > as </ span > < span class =" n " > jit</ span >
1037
+ < span class ="kn "> from </ span > < span class ="nn "> torch</ span > < span class =" kn " > import </ span > < span class =" n " > linalg </ span > < span class =" k " > as </ span > < span class =" n " > linalg</ span >
1038
+ < span class ="kn "> from </ span > < span class ="nn "> torch</ span > < span class =" kn " > import </ span > < span class =" n " > hub </ span > < span class =" k " > as </ span > < span class =" n " > hub</ span >
1039
+ < span class ="kn "> from </ span > < span class ="nn "> torch</ span > < span class =" kn " > import </ span > < span class =" n " > random </ span > < span class =" k " > as </ span > < span class =" n " > random</ span >
1040
+ < span class ="kn "> from </ span > < span class ="nn "> torch</ span > < span class =" kn " > import </ span > < span class =" n " > distributions </ span > < span class =" k " > as </ span > < span class =" n " > distributions</ span >
1041
+ < span class ="kn "> from </ span > < span class ="nn "> torch</ span > < span class =" kn " > import </ span > < span class =" n " > testing </ span > < span class =" k " > as </ span > < span class =" n " > testing</ span >
1021
1042
< span class ="kn "> import</ span > < span class ="nn "> torch.backends.cuda</ span >
1022
1043
< span class ="kn "> import</ span > < span class ="nn "> torch.backends.mkl</ span >
1023
1044
< span class ="kn "> import</ span > < span class ="nn "> torch.backends.mkldnn</ span >
1024
1045
< span class ="kn "> import</ span > < span class ="nn "> torch.backends.openmp</ span >
1025
1046
< span class ="kn "> import</ span > < span class ="nn "> torch.backends.quantized</ span >
1026
- < span class ="kn "> import </ span > < span class ="nn "> torch. quantization</ span >
1047
+ < span class ="kn "> from </ span > < span class ="nn "> torch</ span > < span class =" kn " > import </ span > < span class =" n " > quantization </ span > < span class =" k " > as </ span > < span class =" n " > quantization</ span >
1027
1048
< span class ="kn "> import</ span > < span class ="nn "> torch.utils.data</ span >
1028
- < span class ="kn "> import </ span > < span class ="nn "> torch. __config__</ span >
1029
- < span class ="kn "> import </ span > < span class ="nn "> torch. __future__</ span >
1030
- < span class ="kn "> import </ span > < span class ="nn "> torch. profiler</ span >
1049
+ < span class ="kn "> from </ span > < span class ="nn "> torch</ span > < span class =" kn " > import </ span > < span class =" n " > __config__ </ span > < span class =" k " > as </ span > < span class =" n " > __config__</ span >
1050
+ < span class ="kn "> from </ span > < span class ="nn "> torch</ span > < span class =" kn " > import </ span > < span class =" n " > __future__ </ span > < span class =" k " > as </ span > < span class =" n " > __future__</ span >
1051
+ < span class ="kn "> from </ span > < span class ="nn "> torch</ span > < span class =" kn " > import </ span > < span class =" n " > profiler </ span > < span class =" k " > as </ span > < span class =" n " > profiler</ span >
1031
1052
1032
1053
< span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _init_names</ span > < span class ="p "> (</ span > < span class ="nb "> list</ span > < span class ="p "> (</ span > < span class ="n "> torch</ span > < span class ="o "> .</ span > < span class ="n "> _storage_classes</ span > < span class ="p "> ))</ span >
1033
1054
@@ -1042,11 +1063,11 @@ <h1>Source code for torch</h1><div class="highlight"><pre>
1042
1063
1043
1064
1044
1065
< span class ="c1 "> # Import the ops "namespace"</ span >
1045
- < span class ="kn "> from</ span > < span class ="nn "> torch._ops</ span > < span class ="kn "> import</ span > < span class ="n "> ops</ span >
1046
- < span class ="kn "> from</ span > < span class ="nn "> torch._classes</ span > < span class ="kn "> import</ span > < span class ="n "> classes</ span >
1066
+ < span class ="kn "> from</ span > < span class ="nn "> torch._ops</ span > < span class ="kn "> import</ span > < span class ="n "> ops</ span > < span class =" k " > as </ span > < span class =" n " > ops </ span >
1067
+ < span class ="kn "> from</ span > < span class ="nn "> torch._classes</ span > < span class ="kn "> import</ span > < span class ="n "> classes</ span > < span class =" k " > as </ span > < span class =" n " > classes </ span >
1047
1068
1048
1069
< span class ="c1 "> # Import the quasi random sampler</ span >
1049
- < span class ="kn "> import </ span > < span class ="nn "> torch. quasirandom</ span >
1070
+ < span class ="kn "> from </ span > < span class ="nn "> torch</ span > < span class =" kn " > import </ span > < span class =" n " > quasirandom </ span > < span class =" k " > as </ span > < span class =" n " > quasirandom</ span >
1050
1071
1051
1072
< span class ="c1 "> # If you are seeing this, it means that this call site was not checked if</ span >
1052
1073
< span class ="c1 "> # the memory format could be preserved, and it was switched to old default</ span >
@@ -1060,9 +1081,9 @@ <h1>Source code for torch</h1><div class="highlight"><pre>
1060
1081
1061
1082
< span class ="c1 "> # Import tools that require fully imported torch (for applying</ span >
1062
1083
< span class ="c1 "> # torch.jit.script as a decorator, for instance):</ span >
1063
- < span class ="kn "> from</ span > < span class ="nn "> ._lobpcg</ span > < span class ="kn "> import</ span > < span class ="n "> lobpcg</ span >
1084
+ < span class ="kn "> from</ span > < span class ="nn "> ._lobpcg</ span > < span class ="kn "> import</ span > < span class ="n "> lobpcg</ span > < span class =" k " > as </ span > < span class =" n " > lobpcg </ span >
1064
1085
1065
- < span class ="kn "> from</ span > < span class ="nn "> ._vmap_internals</ span > < span class ="kn "> import</ span > < span class ="n "> vmap</ span >
1086
+ < span class ="kn "> from</ span > < span class ="nn "> ._vmap_internals</ span > < span class ="kn "> import</ span > < span class ="n "> vmap</ span > < span class =" k " > as </ span > < span class =" n " > vmap </ span >
1066
1087
1067
1088
< span class ="c1 "> # These were previously defined in native_functions.yaml and appeared on the</ span >
1068
1089
< span class ="c1 "> # `torch` namespace, but we moved them to c10 dispatch to facilitate custom</ span >
0 commit comments