You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
<spanclass="k">raise</span><spanclass="ne">TypeError</span><spanclass="p">(</span><spanclass="s2">"The argument is not a tensor: </span><spanclass="si">{}</span><spanclass="s2">"</span><spanclass="o">.</span><spanclass="n">format</span><spanclass="p">(</span><spanclass="nb">repr</span><spanclass="p">(</span><spanclass="n">tensor</span><spanclass="p">)))</span>
@@ -487,7 +487,7 @@ <h1>Source code for torch.functional</h1><div class="highlight"><pre>
487
487
<spanclass="c1"># have a similar concept. It's safe to assume any created LongTensor doesn't</span>
488
488
<spanclass="c1"># overflow and it's finite.</span>
<spanclass="k">raise</span><spanclass="ne">TypeError</span><spanclass="p">(</span><spanclass="s2">"The argument is not a tensor: </span><spanclass="si">{}</span><spanclass="s2">"</span><spanclass="o">.</span><spanclass="n">format</span><spanclass="p">(</span><spanclass="nb">repr</span><spanclass="p">(</span><spanclass="n">tensor</span><spanclass="p">)))</span>
<dd class="field-odd"><p><strong>tensor</strong> (<a class="reference internal" href="tensors.html#torch.Tensor" title="torch.Tensor"><em>Tensor</em></a>) – A tensor to check</p>
5312
5312
</dd>
5313
5313
<dt class="field-even">Returns</dt>
5314
-
<dd class="field-even"><p>A <code class="docutils literal notranslate"><span class="pre">torch.ByteTensor</span></code> containing a 1 at each location of finite elements and 0 otherwise</p>
5314
+
<dd class="field-even"><p><code class="docutils literal notranslate"><span class="pre">A</span> <span class="pre">torch.Tensor</span> <span class="pre">with</span> <span class="pre">dtype</span> <span class="pre">torch.bool</span></code> containing a True at each location of finite elements and False otherwise</p>
<dd class="field-odd"><p><strong>tensor</strong> (<a class="reference internal" href="tensors.html#torch.Tensor" title="torch.Tensor"><em>Tensor</em></a>) – A tensor to check</p>
5334
5334
</dd>
5335
5335
<dt class="field-even">Returns</dt>
5336
-
<dd class="field-even"><p>A <code class="docutils literal notranslate"><span class="pre">torch.ByteTensor</span></code> containing a 1 at each location of <cite>+/-INF</cite> elements and 0 otherwise</p>
5336
+
<dd class="field-even"><p><code class="docutils literal notranslate"><span class="pre">A</span> <span class="pre">torch.Tensor</span> <span class="pre">with</span> <span class="pre">dtype</span> <span class="pre">torch.bool</span></code> containing a True at each location of <cite>+/-INF</cite> elements and False otherwise</p>
Copy file name to clipboardExpand all lines: docs/stable/torchvision/models.html
+1-1Lines changed: 1 addition & 1 deletion
Original file line number
Diff line number
Diff line change
@@ -1394,7 +1394,7 @@ <h3>Mask R-CNN<a class="headerlink" href="#mask-r-cnn" title="Permalink to this
1394
1394
<li><p>boxes (<codeclass="docutils literal notranslate"><spanclass="pre">FloatTensor[N,</span><spanclass="pre">4]</span></code>): the ground-truth boxes in <codeclass="docutils literal notranslate"><spanclass="pre">[x1,</span><spanclass="pre">y1,</span><spanclass="pre">x2,</span><spanclass="pre">y2]</span></code> format, with values
1395
1395
between <codeclass="docutils literal notranslate"><spanclass="pre">0</span></code> and <codeclass="docutils literal notranslate"><spanclass="pre">H</span></code> and <codeclass="docutils literal notranslate"><spanclass="pre">0</span></code> and <codeclass="docutils literal notranslate"><spanclass="pre">W</span></code></p></li>
1396
1396
<li><p>labels (<codeclass="docutils literal notranslate"><spanclass="pre">Int64Tensor[N]</span></code>): the class label for each ground-truth box</p></li>
1397
-
<li><p>masks (<codeclass="docutils literal notranslate"><spanclass="pre">UInt8Tensor[N,</span><spanclass="pre">1,</span><spanclass="pre">H,</span><spanclass="pre">W]</span></code>): the segmentation binary masks for each instance</p></li>
1397
+
<li><p>masks (<codeclass="docutils literal notranslate"><spanclass="pre">UInt8Tensor[N,</span><spanclass="pre">H,</span><spanclass="pre">W]</span></code>): the segmentation binary masks for each instance</p></li>
1398
1398
</ul>
1399
1399
</div></blockquote>
1400
1400
<p>The model returns a <codeclass="docutils literal notranslate"><spanclass="pre">Dict[Tensor]</span></code> during training, containing the classification and regression
0 commit comments