Skip to content

Commit 1d0c85a

Browse files
committed
auto-generating sphinx docs
1 parent df60286 commit 1d0c85a

File tree

5 files changed

+13
-13
lines changed

5 files changed

+13
-13
lines changed

docs/stable/_modules/torch/functional.html

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -472,12 +472,12 @@ <h1>Source code for torch.functional</h1><div class="highlight"><pre>
472472
<span class="sd"> tensor (Tensor): A tensor to check</span>
473473

474474
<span class="sd"> Returns:</span>
475-
<span class="sd"> Tensor: A ``torch.ByteTensor`` containing a 1 at each location of finite elements and 0 otherwise</span>
475+
<span class="sd"> Tensor: ``A torch.Tensor with dtype torch.bool`` containing a True at each location of finite elements and False otherwise</span>
476476

477477
<span class="sd"> Example::</span>
478478

479479
<span class="sd"> &gt;&gt;&gt; torch.isfinite(torch.tensor([1, float(&#39;inf&#39;), 2, float(&#39;-inf&#39;), float(&#39;nan&#39;)]))</span>
480-
<span class="sd"> tensor([ 1, 0, 1, 0, 0], dtype=torch.uint8)</span>
480+
<span class="sd"> tensor([True, False, True, False, False])</span>
481481
<span class="sd"> &quot;&quot;&quot;</span>
482482
<span class="k">if</span> <span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">tensor</span><span class="p">,</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">):</span>
483483
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span><span class="s2">&quot;The argument is not a tensor: </span><span class="si">{}</span><span class="s2">&quot;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="nb">repr</span><span class="p">(</span><span class="n">tensor</span><span class="p">)))</span>
@@ -487,7 +487,7 @@ <h1>Source code for torch.functional</h1><div class="highlight"><pre>
487487
<span class="c1"># have a similar concept. It&#39;s safe to assume any created LongTensor doesn&#39;t</span>
488488
<span class="c1"># overflow and it&#39;s finite.</span>
489489
<span class="k">if</span> <span class="ow">not</span> <span class="n">tensor</span><span class="o">.</span><span class="n">is_floating_point</span><span class="p">():</span>
490-
<span class="k">return</span> <span class="n">torch</span><span class="o">.</span><span class="n">ones_like</span><span class="p">(</span><span class="n">tensor</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">uint8</span><span class="p">)</span>
490+
<span class="k">return</span> <span class="n">torch</span><span class="o">.</span><span class="n">ones_like</span><span class="p">(</span><span class="n">tensor</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">bool</span><span class="p">)</span>
491491
<span class="k">return</span> <span class="p">(</span><span class="n">tensor</span> <span class="o">==</span> <span class="n">tensor</span><span class="p">)</span> <span class="o">&amp;</span> <span class="p">(</span><span class="n">tensor</span><span class="o">.</span><span class="n">abs</span><span class="p">()</span> <span class="o">!=</span> <span class="n">inf</span><span class="p">)</span></div>
492492

493493

@@ -498,17 +498,17 @@ <h1>Source code for torch.functional</h1><div class="highlight"><pre>
498498
<span class="sd"> tensor (Tensor): A tensor to check</span>
499499

500500
<span class="sd"> Returns:</span>
501-
<span class="sd"> Tensor: A ``torch.ByteTensor`` containing a 1 at each location of `+/-INF` elements and 0 otherwise</span>
501+
<span class="sd"> Tensor: ``A torch.Tensor with dtype torch.bool`` containing a True at each location of `+/-INF` elements and False otherwise</span>
502502

503503
<span class="sd"> Example::</span>
504504

505505
<span class="sd"> &gt;&gt;&gt; torch.isinf(torch.tensor([1, float(&#39;inf&#39;), 2, float(&#39;-inf&#39;), float(&#39;nan&#39;)]))</span>
506-
<span class="sd"> tensor([ 0, 1, 0, 1, 0], dtype=torch.uint8)</span>
506+
<span class="sd"> tensor([False, True, False, True, False])</span>
507507
<span class="sd"> &quot;&quot;&quot;</span>
508508
<span class="k">if</span> <span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">tensor</span><span class="p">,</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">):</span>
509509
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span><span class="s2">&quot;The argument is not a tensor: </span><span class="si">{}</span><span class="s2">&quot;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="nb">repr</span><span class="p">(</span><span class="n">tensor</span><span class="p">)))</span>
510510
<span class="k">if</span> <span class="n">tensor</span><span class="o">.</span><span class="n">dtype</span> <span class="ow">in</span> <span class="p">[</span><span class="n">torch</span><span class="o">.</span><span class="n">uint8</span><span class="p">,</span> <span class="n">torch</span><span class="o">.</span><span class="n">int8</span><span class="p">,</span> <span class="n">torch</span><span class="o">.</span><span class="n">int16</span><span class="p">,</span> <span class="n">torch</span><span class="o">.</span><span class="n">int32</span><span class="p">,</span> <span class="n">torch</span><span class="o">.</span><span class="n">int64</span><span class="p">]:</span>
511-
<span class="k">return</span> <span class="n">torch</span><span class="o">.</span><span class="n">zeros_like</span><span class="p">(</span><span class="n">tensor</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">uint8</span><span class="p">)</span>
511+
<span class="k">return</span> <span class="n">torch</span><span class="o">.</span><span class="n">zeros_like</span><span class="p">(</span><span class="n">tensor</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">bool</span><span class="p">)</span>
512512
<span class="k">return</span> <span class="n">tensor</span><span class="o">.</span><span class="n">abs</span><span class="p">()</span> <span class="o">==</span> <span class="n">inf</span></div>
513513

514514

docs/stable/_modules/torchvision/models/detection/mask_rcnn.html

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -294,7 +294,7 @@ <h1>Source code for torchvision.models.detection.mask_rcnn</h1><div class="highl
294294
<span class="sd"> - boxes (FloatTensor[N, 4]): the ground-truth boxes in [x1, y1, x2, y2] format, with values</span>
295295
<span class="sd"> between 0 and H and 0 and W</span>
296296
<span class="sd"> - labels (Int64Tensor[N]): the class label for each ground-truth box</span>
297-
<span class="sd"> - masks (UInt8Tensor[N, 1, H, W]): the segmentation binary masks for each instance</span>
297+
<span class="sd"> - masks (UInt8Tensor[N, H, W]): the segmentation binary masks for each instance</span>
298298

299299
<span class="sd"> The model returns a Dict[Tensor] during training, containing the classification and regression</span>
300300
<span class="sd"> losses for both the RPN and the R-CNN, and the mask loss.</span>
@@ -541,7 +541,7 @@ <h1>Source code for torchvision.models.detection.mask_rcnn</h1><div class="highl
541541
<span class="sd"> - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with values</span>
542542
<span class="sd"> between ``0`` and ``H`` and ``0`` and ``W``</span>
543543
<span class="sd"> - labels (``Int64Tensor[N]``): the class label for each ground-truth box</span>
544-
<span class="sd"> - masks (``UInt8Tensor[N, 1, H, W]``): the segmentation binary masks for each instance</span>
544+
<span class="sd"> - masks (``UInt8Tensor[N, H, W]``): the segmentation binary masks for each instance</span>
545545

546546
<span class="sd"> The model returns a ``Dict[Tensor]`` during training, containing the classification and regression</span>
547547
<span class="sd"> losses for both the RPN and the R-CNN, and the mask loss.</span>

docs/stable/objects.inv

0 Bytes
Binary file not shown.

docs/stable/torch.html

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -5311,15 +5311,15 @@ <h3>Comparison Ops<a class="headerlink" href="#comparison-ops" title="Permalink
53115311
<dd class="field-odd"><p><strong>tensor</strong> (<a class="reference internal" href="tensors.html#torch.Tensor" title="torch.Tensor"><em>Tensor</em></a>) – A tensor to check</p>
53125312
</dd>
53135313
<dt class="field-even">Returns</dt>
5314-
<dd class="field-even"><p>A <code class="docutils literal notranslate"><span class="pre">torch.ByteTensor</span></code> containing a 1 at each location of finite elements and 0 otherwise</p>
5314+
<dd class="field-even"><p><code class="docutils literal notranslate"><span class="pre">A</span> <span class="pre">torch.Tensor</span> <span class="pre">with</span> <span class="pre">dtype</span> <span class="pre">torch.bool</span></code> containing a True at each location of finite elements and False otherwise</p>
53155315
</dd>
53165316
<dt class="field-odd">Return type</dt>
53175317
<dd class="field-odd"><p><a class="reference internal" href="tensors.html#torch.Tensor" title="torch.Tensor">Tensor</a></p>
53185318
</dd>
53195319
</dl>
53205320
<p>Example:</p>
53215321
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">torch</span><span class="o">.</span><span class="n">isfinite</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">tensor</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span> <span class="nb">float</span><span class="p">(</span><span class="s1">&#39;inf&#39;</span><span class="p">),</span> <span class="mi">2</span><span class="p">,</span> <span class="nb">float</span><span class="p">(</span><span class="s1">&#39;-inf&#39;</span><span class="p">),</span> <span class="nb">float</span><span class="p">(</span><span class="s1">&#39;nan&#39;</span><span class="p">)]))</span>
5322-
<span class="go">tensor([ 1, 0, 1, 0, 0], dtype=torch.uint8)</span>
5322+
<span class="go">tensor([True, False, True, False, False])</span>
53235323
</pre></div>
53245324
</div>
53255325
</dd></dl>
@@ -5333,15 +5333,15 @@ <h3>Comparison Ops<a class="headerlink" href="#comparison-ops" title="Permalink
53335333
<dd class="field-odd"><p><strong>tensor</strong> (<a class="reference internal" href="tensors.html#torch.Tensor" title="torch.Tensor"><em>Tensor</em></a>) – A tensor to check</p>
53345334
</dd>
53355335
<dt class="field-even">Returns</dt>
5336-
<dd class="field-even"><p>A <code class="docutils literal notranslate"><span class="pre">torch.ByteTensor</span></code> containing a 1 at each location of <cite>+/-INF</cite> elements and 0 otherwise</p>
5336+
<dd class="field-even"><p><code class="docutils literal notranslate"><span class="pre">A</span> <span class="pre">torch.Tensor</span> <span class="pre">with</span> <span class="pre">dtype</span> <span class="pre">torch.bool</span></code> containing a True at each location of <cite>+/-INF</cite> elements and False otherwise</p>
53375337
</dd>
53385338
<dt class="field-odd">Return type</dt>
53395339
<dd class="field-odd"><p><a class="reference internal" href="tensors.html#torch.Tensor" title="torch.Tensor">Tensor</a></p>
53405340
</dd>
53415341
</dl>
53425342
<p>Example:</p>
53435343
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">torch</span><span class="o">.</span><span class="n">isinf</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">tensor</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span> <span class="nb">float</span><span class="p">(</span><span class="s1">&#39;inf&#39;</span><span class="p">),</span> <span class="mi">2</span><span class="p">,</span> <span class="nb">float</span><span class="p">(</span><span class="s1">&#39;-inf&#39;</span><span class="p">),</span> <span class="nb">float</span><span class="p">(</span><span class="s1">&#39;nan&#39;</span><span class="p">)]))</span>
5344-
<span class="go">tensor([ 0, 1, 0, 1, 0], dtype=torch.uint8)</span>
5344+
<span class="go">tensor([False, True, False, True, False])</span>
53455345
</pre></div>
53465346
</div>
53475347
</dd></dl>

docs/stable/torchvision/models.html

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1394,7 +1394,7 @@ <h3>Mask R-CNN<a class="headerlink" href="#mask-r-cnn" title="Permalink to this
13941394
<li><p>boxes (<code class="docutils literal notranslate"><span class="pre">FloatTensor[N,</span> <span class="pre">4]</span></code>): the ground-truth boxes in <code class="docutils literal notranslate"><span class="pre">[x1,</span> <span class="pre">y1,</span> <span class="pre">x2,</span> <span class="pre">y2]</span></code> format, with values
13951395
between <code class="docutils literal notranslate"><span class="pre">0</span></code> and <code class="docutils literal notranslate"><span class="pre">H</span></code> and <code class="docutils literal notranslate"><span class="pre">0</span></code> and <code class="docutils literal notranslate"><span class="pre">W</span></code></p></li>
13961396
<li><p>labels (<code class="docutils literal notranslate"><span class="pre">Int64Tensor[N]</span></code>): the class label for each ground-truth box</p></li>
1397-
<li><p>masks (<code class="docutils literal notranslate"><span class="pre">UInt8Tensor[N,</span> <span class="pre">1,</span> <span class="pre">H,</span> <span class="pre">W]</span></code>): the segmentation binary masks for each instance</p></li>
1397+
<li><p>masks (<code class="docutils literal notranslate"><span class="pre">UInt8Tensor[N,</span> <span class="pre">H,</span> <span class="pre">W]</span></code>): the segmentation binary masks for each instance</p></li>
13981398
</ul>
13991399
</div></blockquote>
14001400
<p>The model returns a <code class="docutils literal notranslate"><span class="pre">Dict[Tensor]</span></code> during training, containing the classification and regression

0 commit comments

Comments
 (0)