-
Notifications
You must be signed in to change notification settings - Fork 505
/
Copy pathtest_profile_mp_mnist.py
247 lines (221 loc) · 7.97 KB
/
test_profile_mp_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
"""Fork of test_train_mp_mnist.py to demonstrate how to profile workloads."""
import args_parse
profile_opts = {
'--profile_step': {
'type': int,
'default': -1,
'help': 'Step at which to trigger a profile programmatically',
},
'--profile_epoch': {
'type': int,
'default': -1,
'help': 'Epoch at which to trigger a profile programmatically',
},
'--profile_logdir': {
'type': str,
'default': None,
'help': 'Path to store programmatically-triggered profiles',
},
'--profile_duration_ms': {
'type': int,
'default': 5000,
'help': 'Duration of programmatically-triggered profile captures'
},
}
FLAGS = args_parse.parse_common_options(
datadir='/tmp/mnist-data',
batch_size=128,
momentum=0.5,
lr=0.01,
target_accuracy=98.0,
num_epochs=18,
profiler_port=9012,
opts=profile_opts.items())
import os
import shutil
import sys
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
import torch_xla
from torch_xla import runtime as xr
import torch_xla.debug.metrics as met
import torch_xla.distributed.parallel_loader as pl
import torch_xla.utils.utils as xu
import torch_xla.core.xla_model as xm
import torch_xla.debug.profiler as xp
import torch_xla.test.test_utils as test_utils
class MNIST(nn.Module):
def __init__(self):
super(MNIST, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.bn1 = nn.BatchNorm2d(10)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.bn2 = nn.BatchNorm2d(20)
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
with xp.Trace('conv1'):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = self.bn1(x)
with xp.Trace('conv2'):
x = F.relu(F.max_pool2d(self.conv2(x), 2))
x = self.bn2(x)
with xp.Trace('dense'):
x = torch.flatten(x, 1)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return F.log_softmax(x, dim=1)
def _train_update(device, x, loss, tracker, writer):
test_utils.print_training_update(
device,
x,
loss.item(),
tracker.rate(),
tracker.global_rate(),
summary_writer=writer)
def train_mnist(flags,
training_started=None,
dynamic_graph=False,
fetch_often=False):
torch.manual_seed(1)
if flags.fake_data:
train_loader = xu.SampleGenerator(
data=(torch.zeros(flags.batch_size, 1, 28,
28), torch.zeros(flags.batch_size,
dtype=torch.int64)),
sample_count=600000 // flags.batch_size // xr.world_size())
test_loader = xu.SampleGenerator(
data=(torch.zeros(flags.batch_size, 1, 28,
28), torch.zeros(flags.batch_size,
dtype=torch.int64)),
sample_count=100000 // flags.batch_size // xr.world_size())
else:
train_dataset = datasets.MNIST(
os.path.join(flags.datadir, str(xr.global_ordinal())),
train=True,
download=True,
transform=transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))]))
test_dataset = datasets.MNIST(
os.path.join(flags.datadir, str(xr.global_ordinal())),
train=False,
download=True,
transform=transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))]))
train_sampler = None
if xr.world_size() > 1:
train_sampler = torch.utils.data.distributed.DistributedSampler(
train_dataset,
num_replicas=xr.world_size(),
rank=xr.global_ordinal(),
shuffle=True)
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=flags.batch_size,
sampler=train_sampler,
drop_last=flags.drop_last,
shuffle=False if train_sampler else True,
num_workers=flags.num_workers)
test_loader = torch.utils.data.DataLoader(
test_dataset,
batch_size=flags.batch_size,
drop_last=flags.drop_last,
shuffle=False,
num_workers=flags.num_workers)
# Scale learning rate to num cores
lr = flags.lr * xr.world_size()
device = xm.xla_device()
model = MNIST().to(device)
writer = None
if xm.is_master_ordinal():
writer = test_utils.get_summary_writer(flags.logdir)
optimizer = optim.SGD(model.parameters(), lr=lr, momentum=flags.momentum)
loss_fn = nn.NLLLoss()
server = xp.start_server(flags.profiler_port)
profile_step = flags.profile_step
profile_epoch = flags.profile_epoch
def train_loop_fn(loader, epoch):
tracker = xm.RateTracker()
model.train()
for step, (data, target) in enumerate(loader):
if epoch == profile_epoch and step == profile_step and xm.is_master_ordinal(
):
# Take a profile in a background thread
xp.trace_detached(
f'localhost:{flags.profiler_port}',
flags.profile_logdir,
duration_ms=flags.profile_duration_ms)
if dynamic_graph:
# testing purpose only: dynamic batch size and graph.
index = max(-step, -flags.batch_size + 1) # non-empty
data, target = data[:-index, :, :, :], target[:-index]
if step >= 15 and training_started:
# testing purpose only: set event for synchronization.
training_started.set()
with xp.StepTrace('train_mnist', step_num=step):
with xp.Trace('build_graph'):
optimizer.zero_grad()
output = model(data)
loss = loss_fn(output, target)
loss.backward()
xm.optimizer_step(optimizer)
if fetch_often:
# testing purpose only: fetch XLA tensors to CPU.
loss_i = loss.item()
tracker.add(flags.batch_size)
if step % flags.log_steps == 0:
xm.add_step_closure(
_train_update, args=(device, step, loss, tracker, writer))
def test_loop_fn(loader):
total_samples = 0
correct = 0
model.eval()
for data, target in loader:
with xp.StepTrace('test_mnist'):
output = model(data)
pred = output.max(1, keepdim=True)[1]
correct += pred.eq(target.view_as(pred)).sum()
total_samples += data.size()[0]
accuracy = 100.0 * correct.item() / total_samples
accuracy = xm.mesh_reduce('test_accuracy', accuracy, np.mean)
return accuracy
train_device_loader = pl.MpDeviceLoader(train_loader, device)
test_device_loader = pl.MpDeviceLoader(test_loader, device)
accuracy, max_accuracy = 0.0, 0.0
for epoch in range(1, flags.num_epochs + 1):
xm.master_print('Epoch {} train begin {}'.format(epoch, test_utils.now()))
train_loop_fn(train_device_loader, epoch)
xm.master_print('Epoch {} train end {}'.format(epoch, test_utils.now()))
accuracy = test_loop_fn(test_device_loader)
xm.master_print('Epoch {} test end {}, Accuracy={:.2f}'.format(
epoch, test_utils.now(), accuracy))
max_accuracy = max(accuracy, max_accuracy)
test_utils.write_to_summary(
writer,
epoch,
dict_to_write={'Accuracy/test': accuracy},
write_xla_metrics=True)
if flags.metrics_debug:
xm.master_print(met.metrics_report())
test_utils.close_summary_writer(writer)
xm.master_print('Max Accuracy: {:.2f}%'.format(max_accuracy))
return max_accuracy
def _mp_fn(index, flags):
torch.set_default_dtype(torch.float32)
accuracy = train_mnist(flags, dynamic_graph=True, fetch_often=True)
if flags.tidy and os.path.isdir(flags.datadir):
shutil.rmtree(flags.datadir)
if accuracy < flags.target_accuracy:
print('Accuracy {} is below target {}'.format(accuracy,
flags.target_accuracy))
sys.exit(21)
if __name__ == '__main__':
debug_single_process = FLAGS.num_cores == 1
torch_xla.launch(
_mp_fn, args=(FLAGS,), debug_single_process=debug_single_process)