diff --git a/docs/source/models.rst b/docs/source/models.rst index c9156e13b68..3aba993a2c0 100644 --- a/docs/source/models.rst +++ b/docs/source/models.rst @@ -64,6 +64,7 @@ These can be constructed by passing ``pretrained=True``: shufflenet = models.shufflenet_v2_x1_0(pretrained=True) mobilenet_v2 = models.mobilenet_v2(pretrained=True) mobilenet_v3_large = models.mobilenet_v3_large(pretrained=True) + mobilenet_v3_small = models.mobilenet_v3_small(pretrained=True) resnext50_32x4d = models.resnext50_32x4d(pretrained=True) wide_resnet50_2 = models.wide_resnet50_2(pretrained=True) mnasnet = models.mnasnet1_0(pretrained=True) @@ -143,6 +144,7 @@ ShuffleNet V2 x1.0 69.362 88.316 ShuffleNet V2 x0.5 60.552 81.746 MobileNet V2 71.878 90.286 MobileNet V3 Large 74.042 91.340 +MobileNet V3 Small 67.668 87.402 ResNeXt-50-32x4d 77.618 93.698 ResNeXt-101-32x8d 79.312 94.526 Wide ResNet-50-2 78.468 94.086 diff --git a/references/classification/README.md b/references/classification/README.md index 1694b25c7a8..7a3144b7cac 100644 --- a/references/classification/README.md +++ b/references/classification/README.md @@ -54,14 +54,18 @@ python -m torch.distributed.launch --nproc_per_node=8 --use_env train.py\ ``` -### MobileNetV3 Large +### MobileNetV3 Large & Small ``` python -m torch.distributed.launch --nproc_per_node=8 --use_env train.py\ - --model mobilenet_v3_large --epochs 600 --opt rmsprop --batch-size 128 --lr 0.064\ + --model $MODEL --epochs 600 --opt rmsprop --batch-size 128 --lr 0.064\ --wd 0.00001 --lr-step-size 2 --lr-gamma 0.973 --auto-augment imagenet --random-erase 0.2 ``` -Then we averaged the parameters of the last 3 checkpoints that improved the Acc@1. See [#3182](https://github.com/pytorch/vision/pull/3182) for details. +Here `$MODEL` is one of `mobilenet_v3_large` or `mobilenet_v3_small`. + +Then we averaged the parameters of the last 3 checkpoints that improved the Acc@1. See [#3182](https://github.com/pytorch/vision/pull/3182) +and [#3354](https://github.com/pytorch/vision/pull/3354) for details. + ## Mixed precision training Automatic Mixed Precision (AMP) training on GPU for Pytorch can be enabled with the [NVIDIA Apex extension](https://github.com/NVIDIA/apex). diff --git a/torchvision/models/mobilenetv3.py b/torchvision/models/mobilenetv3.py index f6117dcb989..1e2606daa42 100644 --- a/torchvision/models/mobilenetv3.py +++ b/torchvision/models/mobilenetv3.py @@ -14,7 +14,7 @@ model_urls = { "mobilenet_v3_large": "https://download.pytorch.org/models/mobilenet_v3_large-8738ca79.pth", - "mobilenet_v3_small": None, + "mobilenet_v3_small": "https://download.pytorch.org/models/mobilenet_v3_small-047dcff4.pth", }