|
3 | 3 |
|
4 | 4 | from torchvision.models import get_weight
|
5 | 5 | from torchvision.models.alexnet import alexnet
|
6 |
| -from torchvision.models.convnext import convnext_tiny, convnext_small, convnext_base, convnext_large |
7 |
| -from torchvision.models.densenet import densenet121, densenet169, densenet201, densenet161 |
| 6 | +from torchvision.models.convnext import convnext_base, convnext_large, convnext_small, convnext_tiny |
| 7 | +from torchvision.models.densenet import densenet121, densenet161, densenet169, densenet201 |
8 | 8 | from torchvision.models.efficientnet import (
|
9 | 9 | efficientnet_b0,
|
10 | 10 | efficientnet_b1,
|
|
14 | 14 | efficientnet_b5,
|
15 | 15 | efficientnet_b6,
|
16 | 16 | efficientnet_b7,
|
17 |
| - efficientnet_v2_s, |
18 |
| - efficientnet_v2_m, |
19 | 17 | efficientnet_v2_l,
|
| 18 | + efficientnet_v2_m, |
| 19 | + efficientnet_v2_s, |
20 | 20 | )
|
21 | 21 | from torchvision.models.googlenet import googlenet
|
22 | 22 | from torchvision.models.inception import inception_v3
|
|
25 | 25 | from torchvision.models.mobilenetv3 import mobilenet_v3_large, mobilenet_v3_small
|
26 | 26 | from torchvision.models.optical_flow import raft_large, raft_small
|
27 | 27 | from torchvision.models.regnet import (
|
28 |
| - regnet_y_400mf, |
29 |
| - regnet_y_800mf, |
30 |
| - regnet_y_1_6gf, |
31 |
| - regnet_y_3_2gf, |
32 |
| - regnet_y_8gf, |
33 |
| - regnet_y_16gf, |
34 |
| - regnet_y_32gf, |
35 |
| - regnet_y_128gf, |
36 |
| - regnet_x_400mf, |
37 |
| - regnet_x_800mf, |
| 28 | + regnet_x_16gf, |
38 | 29 | regnet_x_1_6gf,
|
| 30 | + regnet_x_32gf, |
39 | 31 | regnet_x_3_2gf,
|
| 32 | + regnet_x_400mf, |
| 33 | + regnet_x_800mf, |
40 | 34 | regnet_x_8gf,
|
41 |
| - regnet_x_16gf, |
42 |
| - regnet_x_32gf, |
| 35 | + regnet_y_128gf, |
| 36 | + regnet_y_16gf, |
| 37 | + regnet_y_1_6gf, |
| 38 | + regnet_y_32gf, |
| 39 | + regnet_y_3_2gf, |
| 40 | + regnet_y_400mf, |
| 41 | + regnet_y_800mf, |
| 42 | + regnet_y_8gf, |
43 | 43 | )
|
44 | 44 | from torchvision.models.resnet import (
|
| 45 | + resnet101, |
| 46 | + resnet152, |
45 | 47 | resnet18,
|
46 | 48 | resnet34,
|
47 | 49 | resnet50,
|
48 |
| - resnet101, |
49 |
| - resnet152, |
50 |
| - resnext50_32x4d, |
51 | 50 | resnext101_32x8d,
|
52 | 51 | resnext101_64x4d,
|
53 |
| - wide_resnet50_2, |
| 52 | + resnext50_32x4d, |
54 | 53 | wide_resnet101_2,
|
| 54 | + wide_resnet50_2, |
55 | 55 | )
|
56 | 56 | from torchvision.models.segmentation import (
|
57 |
| - fcn_resnet50, |
58 |
| - fcn_resnet101, |
59 |
| - deeplabv3_resnet50, |
60 |
| - deeplabv3_resnet101, |
61 | 57 | deeplabv3_mobilenet_v3_large,
|
| 58 | + deeplabv3_resnet101, |
| 59 | + deeplabv3_resnet50, |
| 60 | + fcn_resnet101, |
| 61 | + fcn_resnet50, |
62 | 62 | lraspp_mobilenet_v3_large,
|
63 | 63 | )
|
64 | 64 | from torchvision.models.shufflenetv2 import (
|
|
68 | 68 | shufflenet_v2_x2_0,
|
69 | 69 | )
|
70 | 70 | from torchvision.models.squeezenet import squeezenet1_0, squeezenet1_1
|
71 |
| -from torchvision.models.swin_transformer import swin_t, swin_s, swin_b |
72 |
| -from torchvision.models.vgg import vgg11, vgg13, vgg16, vgg19, vgg11_bn, vgg13_bn, vgg16_bn, vgg19_bn |
73 |
| -from torchvision.models.vision_transformer import ( |
74 |
| - vit_b_16, |
75 |
| - vit_b_32, |
76 |
| - vit_l_16, |
77 |
| - vit_l_32, |
78 |
| - vit_h_14, |
79 |
| -) |
| 71 | +from torchvision.models.swin_transformer import swin_b, swin_s, swin_t |
| 72 | +from torchvision.models.vgg import vgg11, vgg11_bn, vgg13, vgg13_bn, vgg16, vgg16_bn, vgg19, vgg19_bn |
| 73 | +from torchvision.models.vision_transformer import vit_b_16, vit_b_32, vit_h_14, vit_l_16, vit_l_32 |
0 commit comments