-
Notifications
You must be signed in to change notification settings - Fork 7k
/
Copy pathvoc.py
224 lines (186 loc) · 8.63 KB
/
voc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import collections
import os
from pathlib import Path
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
from xml.etree.ElementTree import Element as ET_Element
try:
from defusedxml.ElementTree import parse as ET_parse
except ImportError:
from xml.etree.ElementTree import parse as ET_parse
from PIL import Image
from .utils import download_and_extract_archive, verify_str_arg
from .vision import VisionDataset
DATASET_YEAR_DICT = {
"2012": {
"url": "http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar",
"filename": "VOCtrainval_11-May-2012.tar",
"md5": "6cd6e144f989b92b3379bac3b3de84fd",
"base_dir": os.path.join("VOCdevkit", "VOC2012"),
},
"2011": {
"url": "http://host.robots.ox.ac.uk/pascal/VOC/voc2011/VOCtrainval_25-May-2011.tar",
"filename": "VOCtrainval_25-May-2011.tar",
"md5": "6c3384ef61512963050cb5d687e5bf1e",
"base_dir": os.path.join("TrainVal", "VOCdevkit", "VOC2011"),
},
"2010": {
"url": "http://host.robots.ox.ac.uk/pascal/VOC/voc2010/VOCtrainval_03-May-2010.tar",
"filename": "VOCtrainval_03-May-2010.tar",
"md5": "da459979d0c395079b5c75ee67908abb",
"base_dir": os.path.join("VOCdevkit", "VOC2010"),
},
"2009": {
"url": "http://host.robots.ox.ac.uk/pascal/VOC/voc2009/VOCtrainval_11-May-2009.tar",
"filename": "VOCtrainval_11-May-2009.tar",
"md5": "a3e00b113cfcfebf17e343f59da3caa1",
"base_dir": os.path.join("VOCdevkit", "VOC2009"),
},
"2008": {
"url": "http://host.robots.ox.ac.uk/pascal/VOC/voc2008/VOCtrainval_14-Jul-2008.tar",
"filename": "VOCtrainval_11-May-2012.tar",
"md5": "2629fa636546599198acfcfbfcf1904a",
"base_dir": os.path.join("VOCdevkit", "VOC2008"),
},
"2007": {
"url": "http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar",
"filename": "VOCtrainval_06-Nov-2007.tar",
"md5": "c52e279531787c972589f7e41ab4ae64",
"base_dir": os.path.join("VOCdevkit", "VOC2007"),
},
"2007-test": {
"url": "http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar",
"filename": "VOCtest_06-Nov-2007.tar",
"md5": "b6e924de25625d8de591ea690078ad9f",
"base_dir": os.path.join("VOCdevkit", "VOC2007"),
},
}
class _VOCBase(VisionDataset):
_SPLITS_DIR: str
_TARGET_DIR: str
_TARGET_FILE_EXT: str
def __init__(
self,
root: Union[str, Path],
year: str = "2012",
image_set: str = "train",
download: bool = False,
transform: Optional[Callable] = None,
target_transform: Optional[Callable] = None,
transforms: Optional[Callable] = None,
):
super().__init__(root, transforms, transform, target_transform)
self.year = verify_str_arg(year, "year", valid_values=[str(yr) for yr in range(2007, 2013)])
valid_image_sets = ["train", "trainval", "val"]
if year == "2007":
valid_image_sets.append("test")
self.image_set = verify_str_arg(image_set, "image_set", valid_image_sets)
key = "2007-test" if year == "2007" and image_set == "test" else year
dataset_year_dict = DATASET_YEAR_DICT[key]
self.url = dataset_year_dict["url"]
self.filename = dataset_year_dict["filename"]
self.md5 = dataset_year_dict["md5"]
base_dir = dataset_year_dict["base_dir"]
voc_root = os.path.join(self.root, base_dir)
if download:
download_and_extract_archive(self.url, self.root, filename=self.filename, md5=self.md5)
if not os.path.isdir(voc_root):
raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it")
splits_dir = os.path.join(voc_root, "ImageSets", self._SPLITS_DIR)
split_f = os.path.join(splits_dir, image_set.rstrip("\n") + ".txt")
with open(os.path.join(split_f)) as f:
file_names = [x.strip() for x in f.readlines()]
image_dir = os.path.join(voc_root, "JPEGImages")
self.images = [os.path.join(image_dir, x + ".jpg") for x in file_names]
target_dir = os.path.join(voc_root, self._TARGET_DIR)
self.targets = [os.path.join(target_dir, x + self._TARGET_FILE_EXT) for x in file_names]
assert len(self.images) == len(self.targets)
def __len__(self) -> int:
return len(self.images)
class VOCSegmentation(_VOCBase):
"""`Pascal VOC <http://host.robots.ox.ac.uk/pascal/VOC/>`_ Segmentation Dataset.
Args:
root (str or ``pathlib.Path``): Root directory of the VOC Dataset.
year (string, optional): The dataset year, supports years ``"2007"`` to ``"2012"``.
image_set (string, optional): Select the image_set to use, ``"train"``, ``"trainval"`` or ``"val"``. If
``year=="2007"``, can also be ``"test"``.
download (bool, optional): If true, downloads the dataset from the internet and
puts it in root directory. If dataset is already downloaded, it is not
downloaded again.
transform (callable, optional): A function/transform that takes in a PIL image
and returns a transformed version. E.g, ``transforms.RandomCrop``
target_transform (callable, optional): A function/transform that takes in the
target and transforms it.
transforms (callable, optional): A function/transform that takes input sample and its target as entry
and returns a transformed version.
"""
_SPLITS_DIR = "Segmentation"
_TARGET_DIR = "SegmentationClass"
_TARGET_FILE_EXT = ".png"
@property
def masks(self) -> List[str]:
return self.targets
def __getitem__(self, index: int) -> Tuple[Any, Any]:
"""
Args:
index (int): Index
Returns:
tuple: (image, target) where target is the image segmentation.
"""
img = Image.open(self.images[index]).convert("RGB")
target = Image.open(self.masks[index])
if self.transforms is not None:
img, target = self.transforms(img, target)
return img, target
class VOCDetection(_VOCBase):
"""`Pascal VOC <http://host.robots.ox.ac.uk/pascal/VOC/>`_ Detection Dataset.
Args:
root (str or ``pathlib.Path``): Root directory of the VOC Dataset.
year (string, optional): The dataset year, supports years ``"2007"`` to ``"2012"``.
image_set (string, optional): Select the image_set to use, ``"train"``, ``"trainval"`` or ``"val"``. If
``year=="2007"``, can also be ``"test"``.
download (bool, optional): If true, downloads the dataset from the internet and
puts it in root directory. If dataset is already downloaded, it is not
downloaded again.
(default: alphabetic indexing of VOC's 20 classes).
transform (callable, optional): A function/transform that takes in a PIL image
and returns a transformed version. E.g, ``transforms.RandomCrop``
target_transform (callable, required): A function/transform that takes in the
target and transforms it.
transforms (callable, optional): A function/transform that takes input sample and its target as entry
and returns a transformed version.
"""
_SPLITS_DIR = "Main"
_TARGET_DIR = "Annotations"
_TARGET_FILE_EXT = ".xml"
@property
def annotations(self) -> List[str]:
return self.targets
def __getitem__(self, index: int) -> Tuple[Any, Any]:
"""
Args:
index (int): Index
Returns:
tuple: (image, target) where target is a dictionary of the XML tree.
"""
img = Image.open(self.images[index]).convert("RGB")
target = self.parse_voc_xml(ET_parse(self.annotations[index]).getroot())
if self.transforms is not None:
img, target = self.transforms(img, target)
return img, target
@staticmethod
def parse_voc_xml(node: ET_Element) -> Dict[str, Any]:
voc_dict: Dict[str, Any] = {}
children = list(node)
if children:
def_dic: Dict[str, Any] = collections.defaultdict(list)
for dc in map(VOCDetection.parse_voc_xml, children):
for ind, v in dc.items():
def_dic[ind].append(v)
if node.tag == "annotation":
def_dic["object"] = [def_dic["object"]]
voc_dict = {node.tag: {ind: v[0] if len(v) == 1 else v for ind, v in def_dic.items()}}
if node.text:
text = node.text.strip()
if not children:
voc_dict[node.tag] = text
return voc_dict