-
Notifications
You must be signed in to change notification settings - Fork 7k
/
Copy pathtest_image.py
1103 lines (913 loc) · 41.9 KB
/
test_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import concurrent.futures
import glob
import io
import os
import re
import sys
from pathlib import Path
import numpy as np
import pytest
import requests
import torch
import torchvision.transforms.v2.functional as F
from common_utils import assert_equal, cpu_and_cuda, IN_OSS_CI, needs_cuda
from PIL import __version__ as PILLOW_VERSION, Image, ImageOps, ImageSequence
from torchvision.io.image import (
decode_avif,
decode_gif,
decode_heic,
decode_image,
decode_jpeg,
decode_png,
decode_webp,
encode_jpeg,
encode_png,
ImageReadMode,
read_file,
read_image,
write_file,
write_jpeg,
write_png,
)
IMAGE_ROOT = os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets")
FAKEDATA_DIR = os.path.join(IMAGE_ROOT, "fakedata")
IMAGE_DIR = os.path.join(FAKEDATA_DIR, "imagefolder")
DAMAGED_JPEG = os.path.join(IMAGE_ROOT, "damaged_jpeg")
DAMAGED_PNG = os.path.join(IMAGE_ROOT, "damaged_png")
ENCODE_JPEG = os.path.join(IMAGE_ROOT, "encode_jpeg")
INTERLACED_PNG = os.path.join(IMAGE_ROOT, "interlaced_png")
TOOSMALL_PNG = os.path.join(IMAGE_ROOT, "toosmall_png")
IS_WINDOWS = sys.platform in ("win32", "cygwin")
IS_MACOS = sys.platform == "darwin"
IS_LINUX = sys.platform == "linux"
PILLOW_VERSION = tuple(int(x) for x in PILLOW_VERSION.split("."))
WEBP_TEST_IMAGES_DIR = os.environ.get("WEBP_TEST_IMAGES_DIR", "")
# See https://github.com/pytorch/vision/pull/8724#issuecomment-2503964558
HEIC_AVIF_MESSAGE = "AVIF and HEIF only available on linux."
def _get_safe_image_name(name):
# Used when we need to change the pytest "id" for an "image path" parameter.
# If we don't, the test id (i.e. its name) will contain the whole path to the image, which is machine-specific,
# and this creates issues when the test is running in a different machine than where it was collected
# (typically, in fb internal infra)
return name.split(os.path.sep)[-1]
def get_images(directory, img_ext):
assert os.path.isdir(directory)
image_paths = glob.glob(directory + f"/**/*{img_ext}", recursive=True)
for path in image_paths:
if path.split(os.sep)[-2] not in ["damaged_jpeg", "jpeg_write"]:
yield path
def pil_read_image(img_path):
with Image.open(img_path) as img:
return torch.from_numpy(np.array(img))
def normalize_dimensions(img_pil):
if len(img_pil.shape) == 3:
img_pil = img_pil.permute(2, 0, 1)
else:
img_pil = img_pil.unsqueeze(0)
return img_pil
@pytest.mark.parametrize(
"img_path",
[pytest.param(jpeg_path, id=_get_safe_image_name(jpeg_path)) for jpeg_path in get_images(IMAGE_ROOT, ".jpg")],
)
@pytest.mark.parametrize(
"pil_mode, mode",
[
(None, ImageReadMode.UNCHANGED),
("L", ImageReadMode.GRAY),
("RGB", ImageReadMode.RGB),
],
)
@pytest.mark.parametrize("scripted", (False, True))
@pytest.mark.parametrize("decode_fun", (decode_jpeg, decode_image))
def test_decode_jpeg(img_path, pil_mode, mode, scripted, decode_fun):
with Image.open(img_path) as img:
is_cmyk = img.mode == "CMYK"
if pil_mode is not None:
img = img.convert(pil_mode)
img_pil = torch.from_numpy(np.array(img))
if is_cmyk and mode == ImageReadMode.UNCHANGED:
# flip the colors to match libjpeg
img_pil = 255 - img_pil
img_pil = normalize_dimensions(img_pil)
data = read_file(img_path)
if scripted:
decode_fun = torch.jit.script(decode_fun)
img_ljpeg = decode_fun(data, mode=mode)
# Permit a small variation on pixel values to account for implementation
# differences between Pillow and LibJPEG.
abs_mean_diff = (img_ljpeg.type(torch.float32) - img_pil).abs().mean().item()
assert abs_mean_diff < 2
@pytest.mark.parametrize("codec", ["png", "jpeg"])
@pytest.mark.parametrize("orientation", [1, 2, 3, 4, 5, 6, 7, 8, 0])
def test_decode_with_exif_orientation(tmpdir, codec, orientation):
fp = os.path.join(tmpdir, f"exif_oriented_{orientation}.{codec}")
t = torch.randint(0, 256, size=(3, 256, 257), dtype=torch.uint8)
im = F.to_pil_image(t)
exif = im.getexif()
exif[0x0112] = orientation # set exif orientation
im.save(fp, codec.upper(), exif=exif.tobytes())
data = read_file(fp)
output = decode_image(data, apply_exif_orientation=True)
pimg = Image.open(fp)
pimg = ImageOps.exif_transpose(pimg)
expected = F.pil_to_tensor(pimg)
torch.testing.assert_close(expected, output)
@pytest.mark.parametrize("size", [65533, 1, 7, 10, 23, 33])
def test_invalid_exif(tmpdir, size):
# Inspired from a PIL test:
# https://github.com/python-pillow/Pillow/blob/8f63748e50378424628155994efd7e0739a4d1d1/Tests/test_file_jpeg.py#L299
fp = os.path.join(tmpdir, "invalid_exif.jpg")
t = torch.randint(0, 256, size=(3, 256, 257), dtype=torch.uint8)
im = F.to_pil_image(t)
im.save(fp, "JPEG", exif=b"1" * size)
data = read_file(fp)
output = decode_image(data, apply_exif_orientation=True)
pimg = Image.open(fp)
pimg = ImageOps.exif_transpose(pimg)
expected = F.pil_to_tensor(pimg)
torch.testing.assert_close(expected, output)
def test_decode_bad_huffman_images():
# sanity check: make sure we can decode the bad Huffman encoding
bad_huff = read_file(os.path.join(DAMAGED_JPEG, "bad_huffman.jpg"))
decode_jpeg(bad_huff)
@pytest.mark.parametrize(
"img_path",
[
pytest.param(truncated_image, id=_get_safe_image_name(truncated_image))
for truncated_image in glob.glob(os.path.join(DAMAGED_JPEG, "corrupt*.jpg"))
],
)
def test_damaged_corrupt_images(img_path):
# Truncated images should raise an exception
data = read_file(img_path)
if "corrupt34" in img_path:
match_message = "Image is incomplete or truncated"
else:
match_message = "Unsupported marker type"
with pytest.raises(RuntimeError, match=match_message):
decode_jpeg(data)
@pytest.mark.parametrize(
"img_path",
[pytest.param(png_path, id=_get_safe_image_name(png_path)) for png_path in get_images(FAKEDATA_DIR, ".png")],
)
@pytest.mark.parametrize(
"pil_mode, mode",
[
(None, ImageReadMode.UNCHANGED),
("L", ImageReadMode.GRAY),
("LA", ImageReadMode.GRAY_ALPHA),
("RGB", ImageReadMode.RGB),
("RGBA", ImageReadMode.RGB_ALPHA),
],
)
@pytest.mark.parametrize("scripted", (False, True))
@pytest.mark.parametrize("decode_fun", (decode_png, decode_image))
def test_decode_png(img_path, pil_mode, mode, scripted, decode_fun):
if scripted:
decode_fun = torch.jit.script(decode_fun)
with Image.open(img_path) as img:
if pil_mode is not None:
img = img.convert(pil_mode)
img_pil = torch.from_numpy(np.array(img))
img_pil = normalize_dimensions(img_pil)
if img_path.endswith("16.png"):
data = read_file(img_path)
img_lpng = decode_fun(data, mode=mode)
assert img_lpng.dtype == torch.uint16
# PIL converts 16 bits pngs to uint8
img_lpng = F.to_dtype(img_lpng, torch.uint8, scale=True)
else:
data = read_file(img_path)
img_lpng = decode_fun(data, mode=mode)
tol = 0 if pil_mode is None else 1
if PILLOW_VERSION >= (8, 3) and pil_mode == "LA":
# Avoid checking the transparency channel until
# https://github.com/python-pillow/Pillow/issues/5593#issuecomment-878244910
# is fixed.
# TODO: remove once fix is released in PIL. Should be > 8.3.1.
img_lpng, img_pil = img_lpng[0], img_pil[0]
torch.testing.assert_close(img_lpng, img_pil, atol=tol, rtol=0)
def test_decode_png_errors():
with pytest.raises(RuntimeError, match="Out of bound read in decode_png"):
decode_png(read_file(os.path.join(DAMAGED_PNG, "sigsegv.png")))
with pytest.raises(RuntimeError, match="Content is too small for png"):
decode_png(read_file(os.path.join(TOOSMALL_PNG, "heapbof.png")))
@pytest.mark.parametrize(
"img_path",
[pytest.param(png_path, id=_get_safe_image_name(png_path)) for png_path in get_images(IMAGE_DIR, ".png")],
)
@pytest.mark.parametrize("scripted", (True, False))
def test_encode_png(img_path, scripted):
pil_image = Image.open(img_path)
img_pil = torch.from_numpy(np.array(pil_image))
img_pil = img_pil.permute(2, 0, 1)
encode = torch.jit.script(encode_png) if scripted else encode_png
png_buf = encode(img_pil, compression_level=6)
rec_img = Image.open(io.BytesIO(bytes(png_buf.tolist())))
rec_img = torch.from_numpy(np.array(rec_img))
rec_img = rec_img.permute(2, 0, 1)
assert_equal(img_pil, rec_img)
def test_encode_png_errors():
with pytest.raises(RuntimeError, match="Input tensor dtype should be uint8"):
encode_png(torch.empty((3, 100, 100), dtype=torch.float32))
with pytest.raises(RuntimeError, match="Compression level should be between 0 and 9"):
encode_png(torch.empty((3, 100, 100), dtype=torch.uint8), compression_level=-1)
with pytest.raises(RuntimeError, match="Compression level should be between 0 and 9"):
encode_png(torch.empty((3, 100, 100), dtype=torch.uint8), compression_level=10)
with pytest.raises(RuntimeError, match="The number of channels should be 1 or 3, got: 5"):
encode_png(torch.empty((5, 100, 100), dtype=torch.uint8))
@pytest.mark.parametrize(
"img_path",
[pytest.param(png_path, id=_get_safe_image_name(png_path)) for png_path in get_images(IMAGE_DIR, ".png")],
)
@pytest.mark.parametrize("scripted", (True, False))
def test_write_png(img_path, tmpdir, scripted):
pil_image = Image.open(img_path)
img_pil = torch.from_numpy(np.array(pil_image))
img_pil = img_pil.permute(2, 0, 1)
filename, _ = os.path.splitext(os.path.basename(img_path))
torch_png = os.path.join(tmpdir, f"{filename}_torch.png")
write = torch.jit.script(write_png) if scripted else write_png
write(img_pil, torch_png, compression_level=6)
saved_image = torch.from_numpy(np.array(Image.open(torch_png)))
saved_image = saved_image.permute(2, 0, 1)
assert_equal(img_pil, saved_image)
def test_read_image():
# Just testing torchcsript, the functionality is somewhat tested already in other tests.
path = next(get_images(IMAGE_ROOT, ".jpg"))
out = read_image(path)
out_scripted = torch.jit.script(read_image)(path)
torch.testing.assert_close(out, out_scripted, atol=0, rtol=0)
@pytest.mark.parametrize("scripted", (True, False))
def test_read_file(tmpdir, scripted):
fname, content = "test1.bin", b"TorchVision\211\n"
fpath = os.path.join(tmpdir, fname)
with open(fpath, "wb") as f:
f.write(content)
fun = torch.jit.script(read_file) if scripted else read_file
data = fun(fpath)
expected = torch.tensor(list(content), dtype=torch.uint8)
os.unlink(fpath)
assert_equal(data, expected)
with pytest.raises(RuntimeError, match="No such file or directory: 'tst'"):
read_file("tst")
def test_read_file_non_ascii(tmpdir):
fname, content = "日本語(Japanese).bin", b"TorchVision\211\n"
fpath = os.path.join(tmpdir, fname)
with open(fpath, "wb") as f:
f.write(content)
data = read_file(fpath)
expected = torch.tensor(list(content), dtype=torch.uint8)
os.unlink(fpath)
assert_equal(data, expected)
@pytest.mark.parametrize("scripted", (True, False))
def test_write_file(tmpdir, scripted):
fname, content = "test1.bin", b"TorchVision\211\n"
fpath = os.path.join(tmpdir, fname)
content_tensor = torch.tensor(list(content), dtype=torch.uint8)
write = torch.jit.script(write_file) if scripted else write_file
write(fpath, content_tensor)
with open(fpath, "rb") as f:
saved_content = f.read()
os.unlink(fpath)
assert content == saved_content
def test_write_file_non_ascii(tmpdir):
fname, content = "日本語(Japanese).bin", b"TorchVision\211\n"
fpath = os.path.join(tmpdir, fname)
content_tensor = torch.tensor(list(content), dtype=torch.uint8)
write_file(fpath, content_tensor)
with open(fpath, "rb") as f:
saved_content = f.read()
os.unlink(fpath)
assert content == saved_content
@pytest.mark.parametrize(
"shape",
[
(27, 27),
(60, 60),
(105, 105),
],
)
def test_read_1_bit_png(shape, tmpdir):
np_rng = np.random.RandomState(0)
image_path = os.path.join(tmpdir, f"test_{shape}.png")
pixels = np_rng.rand(*shape) > 0.5
img = Image.fromarray(pixels)
img.save(image_path)
img1 = read_image(image_path)
img2 = normalize_dimensions(torch.as_tensor(pixels * 255, dtype=torch.uint8))
assert_equal(img1, img2)
@pytest.mark.parametrize(
"shape",
[
(27, 27),
(60, 60),
(105, 105),
],
)
@pytest.mark.parametrize(
"mode",
[
ImageReadMode.UNCHANGED,
ImageReadMode.GRAY,
],
)
def test_read_1_bit_png_consistency(shape, mode, tmpdir):
np_rng = np.random.RandomState(0)
image_path = os.path.join(tmpdir, f"test_{shape}.png")
pixels = np_rng.rand(*shape) > 0.5
img = Image.fromarray(pixels)
img.save(image_path)
img1 = read_image(image_path, mode)
img2 = read_image(image_path, mode)
assert_equal(img1, img2)
def test_read_interlaced_png():
imgs = list(get_images(INTERLACED_PNG, ".png"))
with Image.open(imgs[0]) as im1, Image.open(imgs[1]) as im2:
assert not (im1.info.get("interlace") is im2.info.get("interlace"))
img1 = read_image(imgs[0])
img2 = read_image(imgs[1])
assert_equal(img1, img2)
@needs_cuda
@pytest.mark.parametrize("mode", [ImageReadMode.UNCHANGED, ImageReadMode.GRAY, ImageReadMode.RGB])
@pytest.mark.parametrize("scripted", (False, True))
def test_decode_jpegs_cuda(mode, scripted):
encoded_images = []
for jpeg_path in get_images(IMAGE_ROOT, ".jpg"):
if "cmyk" in jpeg_path:
continue
encoded_image = read_file(jpeg_path)
encoded_images.append(encoded_image)
decoded_images_cpu = decode_jpeg(encoded_images, mode=mode)
decode_fn = torch.jit.script(decode_jpeg) if scripted else decode_jpeg
# test multithreaded decoding
# in the current version we prevent this by using a lock but we still want to test it
num_workers = 10
with concurrent.futures.ThreadPoolExecutor(max_workers=num_workers) as executor:
futures = [executor.submit(decode_fn, encoded_images, mode, "cuda") for _ in range(num_workers)]
decoded_images_threaded = [future.result() for future in futures]
assert len(decoded_images_threaded) == num_workers
for decoded_images in decoded_images_threaded:
assert len(decoded_images) == len(encoded_images)
for decoded_image_cuda, decoded_image_cpu in zip(decoded_images, decoded_images_cpu):
assert decoded_image_cuda.shape == decoded_image_cpu.shape
assert decoded_image_cuda.dtype == decoded_image_cpu.dtype == torch.uint8
assert (decoded_image_cuda.cpu().float() - decoded_image_cpu.cpu().float()).abs().mean() < 2
@needs_cuda
def test_decode_image_cuda_raises():
data = torch.randint(0, 127, size=(255,), device="cuda", dtype=torch.uint8)
with pytest.raises(RuntimeError):
decode_image(data)
@needs_cuda
def test_decode_jpeg_cuda_device_param():
path = next(path for path in get_images(IMAGE_ROOT, ".jpg") if "cmyk" not in path)
data = read_file(path)
current_device = torch.cuda.current_device()
current_stream = torch.cuda.current_stream()
num_devices = torch.cuda.device_count()
devices = ["cuda", torch.device("cuda")] + [torch.device(f"cuda:{i}") for i in range(num_devices)]
results = []
for device in devices:
results.append(decode_jpeg(data, device=device))
assert len(results) == len(devices)
for result in results:
assert torch.all(result.cpu() == results[0].cpu())
assert current_device == torch.cuda.current_device()
assert current_stream == torch.cuda.current_stream()
@needs_cuda
def test_decode_jpeg_cuda_errors():
data = read_file(next(get_images(IMAGE_ROOT, ".jpg")))
with pytest.raises(RuntimeError, match="Expected a non empty 1-dimensional tensor"):
decode_jpeg(data.reshape(-1, 1), device="cuda")
with pytest.raises(ValueError, match="must be tensors"):
decode_jpeg([1, 2, 3])
with pytest.raises(ValueError, match="Input tensor must be a CPU tensor"):
decode_jpeg(data.to("cuda"), device="cuda")
with pytest.raises(RuntimeError, match="Expected a torch.uint8 tensor"):
decode_jpeg(data.to(torch.float), device="cuda")
with pytest.raises(RuntimeError, match="Expected the device parameter to be a cuda device"):
torch.ops.image.decode_jpegs_cuda([data], ImageReadMode.UNCHANGED.value, "cpu")
with pytest.raises(ValueError, match="Input tensor must be a CPU tensor"):
decode_jpeg(
torch.empty((100,), dtype=torch.uint8, device="cuda"),
)
with pytest.raises(ValueError, match="Input list must contain tensors on CPU"):
decode_jpeg(
[
torch.empty((100,), dtype=torch.uint8, device="cuda"),
torch.empty((100,), dtype=torch.uint8, device="cuda"),
]
)
with pytest.raises(ValueError, match="Input list must contain tensors on CPU"):
decode_jpeg(
[
torch.empty((100,), dtype=torch.uint8, device="cuda"),
torch.empty((100,), dtype=torch.uint8, device="cuda"),
],
device="cuda",
)
with pytest.raises(ValueError, match="Input list must contain tensors on CPU"):
decode_jpeg(
[
torch.empty((100,), dtype=torch.uint8, device="cpu"),
torch.empty((100,), dtype=torch.uint8, device="cuda"),
],
device="cuda",
)
with pytest.raises(RuntimeError, match="Expected a torch.uint8 tensor"):
decode_jpeg(
[
torch.empty((100,), dtype=torch.uint8),
torch.empty((100,), dtype=torch.float32),
],
device="cuda",
)
with pytest.raises(RuntimeError, match="Expected a non empty 1-dimensional tensor"):
decode_jpeg(
[
torch.empty((100,), dtype=torch.uint8),
torch.empty((1, 100), dtype=torch.uint8),
],
device="cuda",
)
with pytest.raises(RuntimeError, match="Error while decoding JPEG images"):
decode_jpeg(
[
torch.empty((100,), dtype=torch.uint8),
torch.empty((100,), dtype=torch.uint8),
],
device="cuda",
)
with pytest.raises(ValueError, match="Input list must contain at least one element"):
decode_jpeg([], device="cuda")
def test_encode_jpeg_errors():
with pytest.raises(RuntimeError, match="Input tensor dtype should be uint8"):
encode_jpeg(torch.empty((3, 100, 100), dtype=torch.float32))
with pytest.raises(ValueError, match="Image quality should be a positive number between 1 and 100"):
encode_jpeg(torch.empty((3, 100, 100), dtype=torch.uint8), quality=-1)
with pytest.raises(ValueError, match="Image quality should be a positive number between 1 and 100"):
encode_jpeg(torch.empty((3, 100, 100), dtype=torch.uint8), quality=101)
with pytest.raises(RuntimeError, match="The number of channels should be 1 or 3, got: 5"):
encode_jpeg(torch.empty((5, 100, 100), dtype=torch.uint8))
with pytest.raises(RuntimeError, match="Input data should be a 3-dimensional tensor"):
encode_jpeg(torch.empty((1, 3, 100, 100), dtype=torch.uint8))
with pytest.raises(RuntimeError, match="Input data should be a 3-dimensional tensor"):
encode_jpeg(torch.empty((100, 100), dtype=torch.uint8))
@pytest.mark.skipif(IS_MACOS, reason="https://github.com/pytorch/vision/issues/8031")
@pytest.mark.parametrize(
"img_path",
[pytest.param(jpeg_path, id=_get_safe_image_name(jpeg_path)) for jpeg_path in get_images(ENCODE_JPEG, ".jpg")],
)
@pytest.mark.parametrize("scripted", (True, False))
def test_encode_jpeg(img_path, scripted):
img = read_image(img_path)
pil_img = F.to_pil_image(img)
buf = io.BytesIO()
pil_img.save(buf, format="JPEG", quality=75)
encoded_jpeg_pil = torch.frombuffer(buf.getvalue(), dtype=torch.uint8)
encode = torch.jit.script(encode_jpeg) if scripted else encode_jpeg
for src_img in [img, img.contiguous()]:
encoded_jpeg_torch = encode(src_img, quality=75)
assert_equal(encoded_jpeg_torch, encoded_jpeg_pil)
@needs_cuda
def test_encode_jpeg_cuda_device_param():
path = next(path for path in get_images(IMAGE_ROOT, ".jpg") if "cmyk" not in path)
data = read_image(path)
current_device = torch.cuda.current_device()
current_stream = torch.cuda.current_stream()
num_devices = torch.cuda.device_count()
devices = ["cuda", torch.device("cuda")] + [torch.device(f"cuda:{i}") for i in range(num_devices)]
results = []
for device in devices:
results.append(encode_jpeg(data.to(device=device)))
assert len(results) == len(devices)
for result in results:
assert torch.all(result.cpu() == results[0].cpu())
assert current_device == torch.cuda.current_device()
assert current_stream == torch.cuda.current_stream()
@needs_cuda
@pytest.mark.parametrize(
"img_path",
[pytest.param(jpeg_path, id=_get_safe_image_name(jpeg_path)) for jpeg_path in get_images(IMAGE_ROOT, ".jpg")],
)
@pytest.mark.parametrize("scripted", (False, True))
@pytest.mark.parametrize("contiguous", (False, True))
def test_encode_jpeg_cuda(img_path, scripted, contiguous):
decoded_image_tv = read_image(img_path)
encode_fn = torch.jit.script(encode_jpeg) if scripted else encode_jpeg
if "cmyk" in img_path:
pytest.xfail("Encoding a CMYK jpeg isn't supported")
if decoded_image_tv.shape[0] == 1:
pytest.xfail("Decoding a grayscale jpeg isn't supported")
# For more detail as to why check out: https://github.com/NVIDIA/cuda-samples/issues/23#issuecomment-559283013
if contiguous:
decoded_image_tv = decoded_image_tv[None].contiguous(memory_format=torch.contiguous_format)[0]
else:
decoded_image_tv = decoded_image_tv[None].contiguous(memory_format=torch.channels_last)[0]
encoded_jpeg_cuda_tv = encode_fn(decoded_image_tv.cuda(), quality=75)
decoded_jpeg_cuda_tv = decode_jpeg(encoded_jpeg_cuda_tv.cpu())
# the actual encoded bytestreams from libnvjpeg and libjpeg-turbo differ for the same quality
# instead, we re-decode the encoded image and compare to the original
abs_mean_diff = (decoded_jpeg_cuda_tv.float() - decoded_image_tv.float()).abs().mean().item()
assert abs_mean_diff < 3
@needs_cuda
def test_encode_jpeg_cuda_sync():
"""
Non-regression test for https://github.com/pytorch/vision/issues/8587.
Attempts to reproduce an intermittent CUDA stream synchronization bug
by randomly creating images and round-tripping them via encode_jpeg
and decode_jpeg on the GPU. Fails if the mean difference in uint8 range
exceeds 5.
"""
torch.manual_seed(42)
# manual testing shows this bug appearing often in iterations between 50 and 100
# as a synchronization bug, this can't be reliably reproduced
max_iterations = 100
threshold = 5.0 # in [0..255]
device = torch.device("cuda")
for iteration in range(max_iterations):
height, width = torch.randint(4000, 5000, size=(2,))
image = torch.linspace(0, 1, steps=height * width, device=device)
image = image.view(1, height, width).expand(3, -1, -1)
image = (image * 255).clamp(0, 255).to(torch.uint8)
jpeg_bytes = encode_jpeg(image, quality=100)
decoded_image = decode_jpeg(jpeg_bytes.cpu(), device=device)
mean_difference = (image.float() - decoded_image.float()).abs().mean().item()
assert mean_difference <= threshold, (
f"Encode/decode mismatch at iteration={iteration}, "
f"size={height}x{width}, mean diff={mean_difference:.2f}"
)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("scripted", (True, False))
@pytest.mark.parametrize("contiguous", (True, False))
def test_encode_jpegs_batch(scripted, contiguous, device):
if device == "cpu" and IS_MACOS:
pytest.skip("https://github.com/pytorch/vision/issues/8031")
decoded_images_tv = []
for jpeg_path in get_images(IMAGE_ROOT, ".jpg"):
if "cmyk" in jpeg_path:
continue
decoded_image = read_image(jpeg_path)
if decoded_image.shape[0] == 1:
continue
if contiguous:
decoded_image = decoded_image[None].contiguous(memory_format=torch.contiguous_format)[0]
else:
decoded_image = decoded_image[None].contiguous(memory_format=torch.channels_last)[0]
decoded_images_tv.append(decoded_image)
encode_fn = torch.jit.script(encode_jpeg) if scripted else encode_jpeg
decoded_images_tv_device = [img.to(device=device) for img in decoded_images_tv]
encoded_jpegs_tv_device = encode_fn(decoded_images_tv_device, quality=75)
encoded_jpegs_tv_device = [decode_jpeg(img.cpu()) for img in encoded_jpegs_tv_device]
for original, encoded_decoded in zip(decoded_images_tv, encoded_jpegs_tv_device):
c, h, w = original.shape
abs_mean_diff = (original.float() - encoded_decoded.float()).abs().mean().item()
assert abs_mean_diff < 3
# test multithreaded decoding
# in the current version we prevent this by using a lock but we still want to test it
num_workers = 10
with concurrent.futures.ThreadPoolExecutor(max_workers=num_workers) as executor:
futures = [executor.submit(encode_fn, decoded_images_tv_device) for _ in range(num_workers)]
encoded_images_threaded = [future.result() for future in futures]
assert len(encoded_images_threaded) == num_workers
for encoded_images in encoded_images_threaded:
assert len(decoded_images_tv_device) == len(encoded_images)
for i, (encoded_image_cuda, decoded_image_tv) in enumerate(zip(encoded_images, decoded_images_tv_device)):
# make sure all the threads produce identical outputs
assert torch.all(encoded_image_cuda == encoded_images_threaded[0][i])
# make sure the outputs are identical or close enough to baseline
decoded_cuda_encoded_image = decode_jpeg(encoded_image_cuda.cpu())
assert decoded_cuda_encoded_image.shape == decoded_image_tv.shape
assert decoded_cuda_encoded_image.dtype == decoded_image_tv.dtype
assert (decoded_cuda_encoded_image.cpu().float() - decoded_image_tv.cpu().float()).abs().mean() < 3
@needs_cuda
def test_single_encode_jpeg_cuda_errors():
with pytest.raises(RuntimeError, match="Input tensor dtype should be uint8"):
encode_jpeg(torch.empty((3, 100, 100), dtype=torch.float32, device="cuda"))
with pytest.raises(RuntimeError, match="The number of channels should be 3, got: 5"):
encode_jpeg(torch.empty((5, 100, 100), dtype=torch.uint8, device="cuda"))
with pytest.raises(RuntimeError, match="The number of channels should be 3, got: 1"):
encode_jpeg(torch.empty((1, 100, 100), dtype=torch.uint8, device="cuda"))
with pytest.raises(RuntimeError, match="Input data should be a 3-dimensional tensor"):
encode_jpeg(torch.empty((1, 3, 100, 100), dtype=torch.uint8, device="cuda"))
with pytest.raises(RuntimeError, match="Input data should be a 3-dimensional tensor"):
encode_jpeg(torch.empty((100, 100), dtype=torch.uint8, device="cuda"))
@needs_cuda
def test_batch_encode_jpegs_cuda_errors():
with pytest.raises(RuntimeError, match="Input tensor dtype should be uint8"):
encode_jpeg(
[
torch.empty((3, 100, 100), dtype=torch.uint8, device="cuda"),
torch.empty((3, 100, 100), dtype=torch.float32, device="cuda"),
]
)
with pytest.raises(RuntimeError, match="The number of channels should be 3, got: 5"):
encode_jpeg(
[
torch.empty((3, 100, 100), dtype=torch.uint8, device="cuda"),
torch.empty((5, 100, 100), dtype=torch.uint8, device="cuda"),
]
)
with pytest.raises(RuntimeError, match="The number of channels should be 3, got: 1"):
encode_jpeg(
[
torch.empty((3, 100, 100), dtype=torch.uint8, device="cuda"),
torch.empty((1, 100, 100), dtype=torch.uint8, device="cuda"),
]
)
with pytest.raises(RuntimeError, match="Input data should be a 3-dimensional tensor"):
encode_jpeg(
[
torch.empty((3, 100, 100), dtype=torch.uint8, device="cuda"),
torch.empty((1, 3, 100, 100), dtype=torch.uint8, device="cuda"),
]
)
with pytest.raises(RuntimeError, match="Input data should be a 3-dimensional tensor"):
encode_jpeg(
[
torch.empty((3, 100, 100), dtype=torch.uint8, device="cuda"),
torch.empty((100, 100), dtype=torch.uint8, device="cuda"),
]
)
with pytest.raises(RuntimeError, match="Input tensor should be on CPU"):
encode_jpeg(
[
torch.empty((3, 100, 100), dtype=torch.uint8, device="cpu"),
torch.empty((3, 100, 100), dtype=torch.uint8, device="cuda"),
]
)
with pytest.raises(
RuntimeError, match="All input tensors must be on the same CUDA device when encoding with nvjpeg"
):
encode_jpeg(
[
torch.empty((3, 100, 100), dtype=torch.uint8, device="cuda"),
torch.empty((3, 100, 100), dtype=torch.uint8, device="cpu"),
]
)
if torch.cuda.device_count() >= 2:
with pytest.raises(
RuntimeError, match="All input tensors must be on the same CUDA device when encoding with nvjpeg"
):
encode_jpeg(
[
torch.empty((3, 100, 100), dtype=torch.uint8, device="cuda:0"),
torch.empty((3, 100, 100), dtype=torch.uint8, device="cuda:1"),
]
)
with pytest.raises(ValueError, match="encode_jpeg requires at least one input tensor when a list is passed"):
encode_jpeg([])
@pytest.mark.skipif(IS_MACOS, reason="https://github.com/pytorch/vision/issues/8031")
@pytest.mark.parametrize(
"img_path",
[pytest.param(jpeg_path, id=_get_safe_image_name(jpeg_path)) for jpeg_path in get_images(ENCODE_JPEG, ".jpg")],
)
@pytest.mark.parametrize("scripted", (True, False))
def test_write_jpeg(img_path, tmpdir, scripted):
tmpdir = Path(tmpdir)
img = read_image(img_path)
pil_img = F.to_pil_image(img)
torch_jpeg = str(tmpdir / "torch.jpg")
pil_jpeg = str(tmpdir / "pil.jpg")
write = torch.jit.script(write_jpeg) if scripted else write_jpeg
write(img, torch_jpeg, quality=75)
pil_img.save(pil_jpeg, quality=75)
with open(torch_jpeg, "rb") as f:
torch_bytes = f.read()
with open(pil_jpeg, "rb") as f:
pil_bytes = f.read()
assert_equal(torch_bytes, pil_bytes)
def test_pathlib_support(tmpdir):
# Just make sure pathlib.Path is supported where relevant
jpeg_path = Path(next(get_images(ENCODE_JPEG, ".jpg")))
read_file(jpeg_path)
read_image(jpeg_path)
write_path = Path(tmpdir) / "whatever"
img = torch.randint(0, 10, size=(3, 4, 4), dtype=torch.uint8)
write_file(write_path, data=img.flatten())
write_jpeg(img, write_path)
write_png(img, write_path)
@pytest.mark.parametrize(
"name", ("gifgrid", "fire", "porsche", "treescap", "treescap-interlaced", "solid2", "x-trans", "earth")
)
@pytest.mark.parametrize("scripted", (True, False))
def test_decode_gif(tmpdir, name, scripted):
# Using test images from GIFLIB
# https://sourceforge.net/p/giflib/code/ci/master/tree/pic/, we assert PIL
# and torchvision decoded outputs are equal.
# We're not testing against "welcome2" because PIL and GIFLIB disagee on what
# the background color should be (likely a difference in the way they handle
# transparency?)
# 'earth' image is from wikipedia, licensed under CC BY-SA 3.0
# https://creativecommons.org/licenses/by-sa/3.0/
# it allows to properly test for transparency, TOP-LEFT offsets, and
# disposal modes.
path = tmpdir / f"{name}.gif"
if name == "earth":
if IN_OSS_CI:
# TODO: Fix this... one day.
pytest.skip("Skipping 'earth' test as it's flaky on OSS CI")
url = "https://upload.wikimedia.org/wikipedia/commons/2/2c/Rotating_earth_%28large%29.gif"
else:
url = f"https://sourceforge.net/p/giflib/code/ci/master/tree/pic/{name}.gif?format=raw"
with open(path, "wb") as f:
f.write(requests.get(url).content)
encoded_bytes = read_file(path)
f = torch.jit.script(decode_gif) if scripted else decode_gif
tv_out = f(encoded_bytes)
if tv_out.ndim == 3:
tv_out = tv_out[None]
assert tv_out.is_contiguous(memory_format=torch.channels_last)
# For some reason, not using Image.open() as a CM causes "ResourceWarning: unclosed file"
with Image.open(path) as pil_img:
pil_seq = ImageSequence.Iterator(pil_img)
for pil_frame, tv_frame in zip(pil_seq, tv_out):
pil_frame = F.pil_to_tensor(pil_frame.convert("RGB"))
torch.testing.assert_close(tv_frame, pil_frame, atol=0, rtol=0)
@pytest.mark.parametrize(
"decode_fun, match",
[
(decode_png, "Content is not png"),
(decode_jpeg, "Not a JPEG file"),
(decode_gif, re.escape("DGifOpenFileName() failed - 103")),
(decode_webp, "WebPGetFeatures failed."),
pytest.param(
decode_avif,
"BMFF parsing failed",
# marks=pytest.mark.skipif(not IS_LINUX, reason=HEIC_AVIF_MESSAGE)
marks=pytest.mark.skipif(True, reason="Skipping avif/heic tests for now."),
),
pytest.param(
decode_heic,
"Invalid input: No 'ftyp' box",
# marks=pytest.mark.skipif(not IS_LINUX, reason=HEIC_AVIF_MESSAGE),
marks=pytest.mark.skipif(True, reason="Skipping avif/heic tests for now."),
),
],
)
def test_decode_bad_encoded_data(decode_fun, match):
encoded_data = torch.randint(0, 256, (100,), dtype=torch.uint8)
with pytest.raises(RuntimeError, match="Input tensor must be 1-dimensional"):
decode_fun(encoded_data[None])
with pytest.raises(RuntimeError, match="Input tensor must have uint8 data type"):
decode_fun(encoded_data.float())
with pytest.raises(RuntimeError, match="Input tensor must be contiguous"):
decode_fun(encoded_data[::2])
with pytest.raises(RuntimeError, match=match):
decode_fun(encoded_data)
@pytest.mark.parametrize("decode_fun", (decode_webp, decode_image))
@pytest.mark.parametrize("scripted", (False, True))
def test_decode_webp(decode_fun, scripted):
encoded_bytes = read_file(next(get_images(FAKEDATA_DIR, ".webp")))
if scripted:
decode_fun = torch.jit.script(decode_fun)
img = decode_fun(encoded_bytes)
assert img.shape == (3, 100, 100)
assert img[None].is_contiguous(memory_format=torch.channels_last)
img += 123 # make sure image buffer wasn't freed by underlying decoding lib
# This test is skipped by default because it requires webp images that we're not
# including within the repo. The test images were downloaded manually from the
# different pages of https://developers.google.com/speed/webp/gallery
@pytest.mark.skipif(not WEBP_TEST_IMAGES_DIR, reason="WEBP_TEST_IMAGES_DIR is not set")
@pytest.mark.parametrize("decode_fun", (decode_webp, decode_image))
@pytest.mark.parametrize("scripted", (False, True))
@pytest.mark.parametrize(
"mode, pil_mode",
(
# Note that converting an RGBA image to RGB leads to bad results because the
# transparent pixels aren't necessarily set to "black" or "white", they can be
# random stuff. This is consistent with PIL results.
(ImageReadMode.RGB, "RGB"),
(ImageReadMode.RGB_ALPHA, "RGBA"),
(ImageReadMode.UNCHANGED, None),
),
)
@pytest.mark.parametrize("filename", Path(WEBP_TEST_IMAGES_DIR).glob("*.webp"), ids=lambda p: p.name)
def test_decode_webp_against_pil(decode_fun, scripted, mode, pil_mode, filename):
encoded_bytes = read_file(filename)
if scripted:
decode_fun = torch.jit.script(decode_fun)
img = decode_fun(encoded_bytes, mode=mode)
assert img[None].is_contiguous(memory_format=torch.channels_last)
pil_img = Image.open(filename).convert(pil_mode)
from_pil = F.pil_to_tensor(pil_img)
assert_equal(img, from_pil)
img += 123 # make sure image buffer wasn't freed by underlying decoding lib
# @pytest.mark.skipif(not IS_LINUX, reason=HEIC_AVIF_MESSAGE)
@pytest.mark.skipif(True, reason="Skipping avif/heic tests for now.")
@pytest.mark.parametrize("decode_fun", (decode_avif,))
def test_decode_avif(decode_fun):
encoded_bytes = read_file(next(get_images(FAKEDATA_DIR, ".avif")))
img = decode_fun(encoded_bytes)
assert img.shape == (3, 100, 100)
assert img[None].is_contiguous(memory_format=torch.channels_last)
img += 123 # make sure image buffer wasn't freed by underlying decoding lib
# Note: decode_image fails because some of these files have a (valid) signature
# we don't recognize. We should probably use libmagic....
# @pytest.mark.skipif(not IS_LINUX, reason=HEIC_AVIF_MESSAGE)
@pytest.mark.skipif(True, reason="Skipping avif/heic tests for now.")
@pytest.mark.parametrize("decode_fun", (decode_avif, decode_heic))
@pytest.mark.parametrize(
"mode, pil_mode",
(
(ImageReadMode.RGB, "RGB"),
(ImageReadMode.RGB_ALPHA, "RGBA"),
(ImageReadMode.UNCHANGED, None),
),
)
@pytest.mark.parametrize(
"filename", Path("/home/nicolashug/dev/libavif/tests/data/").glob("*.avif"), ids=lambda p: p.name
)
def test_decode_avif_heic_against_pil(decode_fun, mode, pil_mode, filename):
if "reversed_dimg_order" in str(filename):
# Pillow properly decodes this one, but we don't (order of parts of the
# image is wrong). This is due to a bug that was recently fixed in
# libavif. Hopefully this test will end up passing soon with a new
# libavif version https://github.com/AOMediaCodec/libavif/issues/2311