-
Notifications
You must be signed in to change notification settings - Fork 7k
/
Copy pathtransforms.py
650 lines (520 loc) · 25.6 KB
/
transforms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
import random
from typing import Callable, List, Optional, Sequence, Tuple, Union
import numpy as np
import PIL.Image
import torch
import torchvision.transforms as T
import torchvision.transforms.functional as F
from torch import Tensor
T_FLOW = Union[Tensor, np.ndarray, None]
T_MASK = Union[Tensor, np.ndarray, None]
T_STEREO_TENSOR = Tuple[Tensor, Tensor]
T_COLOR_AUG_PARAM = Union[float, Tuple[float, float]]
def rand_float_range(size: Sequence[int], low: float, high: float) -> Tensor:
return (low - high) * torch.rand(size) + high
class InterpolationStrategy:
_valid_modes: List[str] = ["mixed", "bicubic", "bilinear"]
def __init__(self, mode: str = "mixed") -> None:
if mode not in self._valid_modes:
raise ValueError(f"Invalid interpolation mode: {mode}. Valid modes are: {self._valid_modes}")
if mode == "mixed":
self.strategies = [F.InterpolationMode.BILINEAR, F.InterpolationMode.BICUBIC]
elif mode == "bicubic":
self.strategies = [F.InterpolationMode.BICUBIC]
elif mode == "bilinear":
self.strategies = [F.InterpolationMode.BILINEAR]
def __call__(self) -> F.InterpolationMode:
return random.choice(self.strategies)
@classmethod
def is_valid(mode: str) -> bool:
return mode in InterpolationStrategy._valid_modes
@property
def valid_modes() -> List[str]:
return InterpolationStrategy._valid_modes
class ValidateModelInput(torch.nn.Module):
# Pass-through transform that checks the shape and dtypes to make sure the model gets what it expects
def forward(self, images: T_STEREO_TENSOR, disparities: T_FLOW, masks: T_MASK):
if images[0].shape != images[1].shape:
raise ValueError("img1 and img2 should have the same shape.")
h, w = images[0].shape[-2:]
if disparities[0] is not None and disparities[0].shape != (1, h, w):
raise ValueError(f"disparities[0].shape should be (1, {h}, {w}) instead of {disparities[0].shape}")
if masks[0] is not None:
if masks[0].shape != (h, w):
raise ValueError(f"masks[0].shape should be ({h}, {w}) instead of {masks[0].shape}")
if masks[0].dtype != torch.bool:
raise TypeError(f"masks[0] should be of dtype torch.bool instead of {masks[0].dtype}")
return images, disparities, masks
class ConvertToGrayscale(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
def forward(
self,
images: Tuple[PIL.Image.Image, PIL.Image.Image],
disparities: Tuple[T_FLOW, T_FLOW],
masks: Tuple[T_MASK, T_MASK],
) -> Tuple[T_STEREO_TENSOR, Tuple[T_FLOW, T_FLOW], Tuple[T_MASK, T_MASK]]:
img_left = F.rgb_to_grayscale(images[0], num_output_channels=3)
img_right = F.rgb_to_grayscale(images[1], num_output_channels=3)
return (img_left, img_right), disparities, masks
class MakeValidDisparityMask(torch.nn.Module):
def __init__(self, max_disparity: Optional[int] = 256) -> None:
super().__init__()
self.max_disparity = max_disparity
def forward(
self,
images: T_STEREO_TENSOR,
disparities: Tuple[T_FLOW, T_FLOW],
masks: Tuple[T_MASK, T_MASK],
) -> Tuple[T_STEREO_TENSOR, Tuple[T_FLOW, T_FLOW], Tuple[T_MASK, T_MASK]]:
valid_masks = tuple(
torch.ones(images[idx].shape[-2:], dtype=torch.bool, device=images[idx].device) if mask is None else mask
for idx, mask in enumerate(masks)
)
valid_masks = tuple(
torch.logical_and(mask, disparity > 0).squeeze(0) if disparity is not None else mask
for mask, disparity in zip(valid_masks, disparities)
)
if self.max_disparity is not None:
valid_masks = tuple(
torch.logical_and(mask, disparity < self.max_disparity).squeeze(0) if disparity is not None else mask
for mask, disparity in zip(valid_masks, disparities)
)
return images, disparities, valid_masks
class ToGPU(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
def forward(
self,
images: T_STEREO_TENSOR,
disparities: Tuple[T_FLOW, T_FLOW],
masks: Tuple[T_MASK, T_MASK],
) -> Tuple[T_STEREO_TENSOR, Tuple[T_FLOW, T_FLOW], Tuple[T_MASK, T_MASK]]:
dev_images = tuple(image.cuda() for image in images)
dev_disparities = tuple(map(lambda x: x.cuda() if x is not None else None, disparities))
dev_masks = tuple(map(lambda x: x.cuda() if x is not None else None, masks))
return dev_images, dev_disparities, dev_masks
class ConvertImageDtype(torch.nn.Module):
def __init__(self, dtype: torch.dtype):
super().__init__()
self.dtype = dtype
def forward(
self,
images: T_STEREO_TENSOR,
disparities: Tuple[T_FLOW, T_FLOW],
masks: Tuple[T_MASK, T_MASK],
) -> Tuple[T_STEREO_TENSOR, Tuple[T_FLOW, T_FLOW], Tuple[T_MASK, T_MASK]]:
img_left = F.convert_image_dtype(images[0], dtype=self.dtype)
img_right = F.convert_image_dtype(images[1], dtype=self.dtype)
img_left = img_left.contiguous()
img_right = img_right.contiguous()
return (img_left, img_right), disparities, masks
class Normalize(torch.nn.Module):
def __init__(self, mean: List[float], std: List[float]) -> None:
super().__init__()
self.mean = mean
self.std = std
def forward(
self,
images: T_STEREO_TENSOR,
disparities: Tuple[T_FLOW, T_FLOW],
masks: Tuple[T_MASK, T_MASK],
) -> Tuple[T_STEREO_TENSOR, Tuple[T_FLOW, T_FLOW], Tuple[T_MASK, T_MASK]]:
img_left = F.normalize(images[0], mean=self.mean, std=self.std)
img_right = F.normalize(images[1], mean=self.mean, std=self.std)
img_left = img_left.contiguous()
img_right = img_right.contiguous()
return (img_left, img_right), disparities, masks
class ToTensor(torch.nn.Module):
def forward(
self,
images: Tuple[PIL.Image.Image, PIL.Image.Image],
disparities: Tuple[T_FLOW, T_FLOW],
masks: Tuple[T_MASK, T_MASK],
) -> Tuple[T_STEREO_TENSOR, Tuple[T_FLOW, T_FLOW], Tuple[T_MASK, T_MASK]]:
if images[0] is None:
raise ValueError("img_left is None")
if images[1] is None:
raise ValueError("img_right is None")
img_left = F.pil_to_tensor(images[0])
img_right = F.pil_to_tensor(images[1])
disparity_tensors = ()
mask_tensors = ()
for idx in range(2):
disparity_tensors += (torch.from_numpy(disparities[idx]),) if disparities[idx] is not None else (None,)
mask_tensors += (torch.from_numpy(masks[idx]),) if masks[idx] is not None else (None,)
return (img_left, img_right), disparity_tensors, mask_tensors
class AsymmetricColorJitter(T.ColorJitter):
# p determines the probability of doing asymmetric vs symmetric color jittering
def __init__(
self,
brightness: T_COLOR_AUG_PARAM = 0,
contrast: T_COLOR_AUG_PARAM = 0,
saturation: T_COLOR_AUG_PARAM = 0,
hue: T_COLOR_AUG_PARAM = 0,
p: float = 0.2,
):
super().__init__(brightness=brightness, contrast=contrast, saturation=saturation, hue=hue)
self.p = p
def forward(
self,
images: T_STEREO_TENSOR,
disparities: Tuple[T_FLOW, T_FLOW],
masks: Tuple[T_MASK, T_MASK],
) -> Tuple[T_STEREO_TENSOR, Tuple[T_FLOW, T_FLOW], Tuple[T_MASK, T_MASK]]:
if torch.rand(1) < self.p:
# asymmetric: different transform for img1 and img2
img_left = super().forward(images[0])
img_right = super().forward(images[1])
else:
# symmetric: same transform for img1 and img2
batch = torch.stack(images)
batch = super().forward(batch)
img_left, img_right = batch[0], batch[1]
return (img_left, img_right), disparities, masks
class AsymetricGammaAdjust(torch.nn.Module):
def __init__(self, p: float, gamma_range: Tuple[float, float], gain: float = 1) -> None:
super().__init__()
self.gamma_range = gamma_range
self.gain = gain
self.p = p
def forward(
self,
images: T_STEREO_TENSOR,
disparities: Tuple[T_FLOW, T_FLOW],
masks: Tuple[T_MASK, T_MASK],
) -> Tuple[T_STEREO_TENSOR, Tuple[T_FLOW, T_FLOW], Tuple[T_MASK, T_MASK]]:
gamma = rand_float_range((1,), low=self.gamma_range[0], high=self.gamma_range[1]).item()
if torch.rand(1) < self.p:
# asymmetric: different transform for img1 and img2
img_left = F.adjust_gamma(images[0], gamma, gain=self.gain)
img_right = F.adjust_gamma(images[1], gamma, gain=self.gain)
else:
# symmetric: same transform for img1 and img2
batch = torch.stack(images)
batch = F.adjust_gamma(batch, gamma, gain=self.gain)
img_left, img_right = batch[0], batch[1]
return (img_left, img_right), disparities, masks
class RandomErase(torch.nn.Module):
# Produces multiple symmetric random erasures
# these can be viewed as occlusions present in both camera views.
# Similarly to Optical Flow occlusion prediction tasks, we mask these pixels in the disparity map
def __init__(
self,
p: float = 0.5,
erase_px_range: Tuple[int, int] = (50, 100),
value: Union[Tensor, float] = 0,
inplace: bool = False,
max_erase: int = 2,
):
super().__init__()
self.min_px_erase = erase_px_range[0]
self.max_px_erase = erase_px_range[1]
if self.max_px_erase < 0:
raise ValueError("erase_px_range[1] should be equal or greater than 0")
if self.min_px_erase < 0:
raise ValueError("erase_px_range[0] should be equal or greater than 0")
if self.min_px_erase > self.max_px_erase:
raise ValueError("erase_prx_range[0] should be equal or lower than erase_px_range[1]")
self.p = p
self.value = value
self.inplace = inplace
self.max_erase = max_erase
def forward(
self,
images: T_STEREO_TENSOR,
disparities: T_STEREO_TENSOR,
masks: T_STEREO_TENSOR,
) -> Tuple[T_STEREO_TENSOR, Tuple[T_FLOW, T_FLOW], Tuple[T_MASK, T_MASK]]:
if torch.rand(1) < self.p:
return images, disparities, masks
image_left, image_right = images
mask_left, mask_right = masks
for _ in range(torch.randint(self.max_erase, size=(1,)).item()):
y, x, h, w, v = self._get_params(image_left)
image_right = F.erase(image_right, y, x, h, w, v, self.inplace)
image_left = F.erase(image_left, y, x, h, w, v, self.inplace)
# similarly to optical flow occlusion prediction, we consider
# any erasure pixels that are in both images to be occluded therefore
# we mark them as invalid
if mask_left is not None:
mask_left = F.erase(mask_left, y, x, h, w, False, self.inplace)
if mask_right is not None:
mask_right = F.erase(mask_right, y, x, h, w, False, self.inplace)
return (image_left, image_right), disparities, (mask_left, mask_right)
def _get_params(self, img: torch.Tensor) -> Tuple[int, int, int, int, float]:
img_h, img_w = img.shape[-2:]
crop_h, crop_w = (
random.randint(self.min_px_erase, self.max_px_erase),
random.randint(self.min_px_erase, self.max_px_erase),
)
crop_x, crop_y = (random.randint(0, img_w - crop_w), random.randint(0, img_h - crop_h))
return crop_y, crop_x, crop_h, crop_w, self.value
class RandomOcclusion(torch.nn.Module):
# This adds an occlusion in the right image
# the occluded patch works as a patch erase where the erase value is the mean
# of the pixels from the selected zone
def __init__(self, p: float = 0.5, occlusion_px_range: Tuple[int, int] = (50, 100), inplace: bool = False):
super().__init__()
self.min_px_occlusion = occlusion_px_range[0]
self.max_px_occlusion = occlusion_px_range[1]
if self.max_px_occlusion < 0:
raise ValueError("occlusion_px_range[1] should be greater or equal than 0")
if self.min_px_occlusion < 0:
raise ValueError("occlusion_px_range[0] should be greater or equal than 0")
if self.min_px_occlusion > self.max_px_occlusion:
raise ValueError("occlusion_px_range[0] should be lower than occlusion_px_range[1]")
self.p = p
self.inplace = inplace
def forward(
self,
images: T_STEREO_TENSOR,
disparities: T_STEREO_TENSOR,
masks: T_STEREO_TENSOR,
) -> Tuple[T_STEREO_TENSOR, Tuple[T_FLOW, T_FLOW], Tuple[T_MASK, T_MASK]]:
left_image, right_image = images
if torch.rand(1) < self.p:
return images, disparities, masks
y, x, h, w, v = self._get_params(right_image)
right_image = F.erase(right_image, y, x, h, w, v, self.inplace)
return ((left_image, right_image), disparities, masks)
def _get_params(self, img: torch.Tensor) -> Tuple[int, int, int, int, float]:
img_h, img_w = img.shape[-2:]
crop_h, crop_w = (
random.randint(self.min_px_occlusion, self.max_px_occlusion),
random.randint(self.min_px_occlusion, self.max_px_occlusion),
)
crop_x, crop_y = (random.randint(0, img_w - crop_w), random.randint(0, img_h - crop_h))
occlusion_value = img[..., crop_y : crop_y + crop_h, crop_x : crop_x + crop_w].mean(dim=(-2, -1), keepdim=True)
return (crop_y, crop_x, crop_h, crop_w, occlusion_value)
class RandomSpatialShift(torch.nn.Module):
# This transform applies a vertical shift and a slight angle rotation and the same time
def __init__(
self, p: float = 0.5, max_angle: float = 0.1, max_px_shift: int = 2, interpolation_type: str = "bilinear"
) -> None:
super().__init__()
self.p = p
self.max_angle = max_angle
self.max_px_shift = max_px_shift
self._interpolation_mode_strategy = InterpolationStrategy(interpolation_type)
def forward(
self,
images: T_STEREO_TENSOR,
disparities: T_STEREO_TENSOR,
masks: T_STEREO_TENSOR,
) -> Tuple[T_STEREO_TENSOR, Tuple[T_FLOW, T_FLOW], Tuple[T_MASK, T_MASK]]:
# the transform is applied only on the right image
# in order to mimic slight calibration issues
img_left, img_right = images
INTERP_MODE = self._interpolation_mode_strategy()
if torch.rand(1) < self.p:
# [0, 1] -> [-a, a]
shift = rand_float_range((1,), low=-self.max_px_shift, high=self.max_px_shift).item()
angle = rand_float_range((1,), low=-self.max_angle, high=self.max_angle).item()
# sample center point for the rotation matrix
y = torch.randint(size=(1,), low=0, high=img_right.shape[-2]).item()
x = torch.randint(size=(1,), low=0, high=img_right.shape[-1]).item()
# apply affine transformations
img_right = F.affine(
img_right,
angle=angle,
translate=[0, shift], # translation only on the y-axis
center=[x, y],
scale=1.0,
shear=0.0,
interpolation=INTERP_MODE,
)
return ((img_left, img_right), disparities, masks)
class RandomHorizontalFlip(torch.nn.Module):
def __init__(self, p: float = 0.5) -> None:
super().__init__()
self.p = p
def forward(
self,
images: T_STEREO_TENSOR,
disparities: Tuple[T_FLOW, T_FLOW],
masks: Tuple[T_MASK, T_MASK],
) -> Tuple[T_STEREO_TENSOR, Tuple[T_FLOW, T_FLOW], Tuple[T_MASK, T_MASK]]:
img_left, img_right = images
dsp_left, dsp_right = disparities
mask_left, mask_right = masks
if dsp_right is not None and torch.rand(1) < self.p:
img_left, img_right = F.hflip(img_left), F.hflip(img_right)
dsp_left, dsp_right = F.hflip(dsp_left), F.hflip(dsp_right)
if mask_left is not None and mask_right is not None:
mask_left, mask_right = F.hflip(mask_left), F.hflip(mask_right)
return ((img_right, img_left), (dsp_right, dsp_left), (mask_right, mask_left))
return images, disparities, masks
class Resize(torch.nn.Module):
def __init__(self, resize_size: Tuple[int, ...], interpolation_type: str = "bilinear") -> None:
super().__init__()
self.resize_size = list(resize_size) # doing this to keep mypy happy
self._interpolation_mode_strategy = InterpolationStrategy(interpolation_type)
def forward(
self,
images: T_STEREO_TENSOR,
disparities: Tuple[T_FLOW, T_FLOW],
masks: Tuple[T_MASK, T_MASK],
) -> Tuple[T_STEREO_TENSOR, Tuple[T_FLOW, T_FLOW], Tuple[T_MASK, T_MASK]]:
resized_images = ()
resized_disparities = ()
resized_masks = ()
INTERP_MODE = self._interpolation_mode_strategy()
for img in images:
# We hard-code antialias=False to preserve results after we changed
# its default from None to True (see
# https://github.com/pytorch/vision/pull/7160)
# TODO: we could re-train the stereo models with antialias=True?
resized_images += (F.resize(img, self.resize_size, interpolation=INTERP_MODE, antialias=False),)
for dsp in disparities:
if dsp is not None:
# rescale disparity to match the new image size
scale_x = self.resize_size[1] / dsp.shape[-1]
resized_disparities += (F.resize(dsp, self.resize_size, interpolation=INTERP_MODE) * scale_x,)
else:
resized_disparities += (None,)
for mask in masks:
if mask is not None:
resized_masks += (
# we squeeze and unsqueeze because the API requires > 3D tensors
F.resize(
mask.unsqueeze(0),
self.resize_size,
interpolation=F.InterpolationMode.NEAREST,
).squeeze(0),
)
else:
resized_masks += (None,)
return resized_images, resized_disparities, resized_masks
class RandomRescaleAndCrop(torch.nn.Module):
# This transform will resize the input with a given proba, and then crop it.
# These are the reversed operations of the built-in RandomResizedCrop,
# although the order of the operations doesn't matter too much: resizing a
# crop would give the same result as cropping a resized image, up to
# interpolation artifact at the borders of the output.
#
# The reason we don't rely on RandomResizedCrop is because of a significant
# difference in the parametrization of both transforms, in particular,
# because of the way the random parameters are sampled in both transforms,
# which leads to fairly different results (and different epe). For more details see
# https://github.com/pytorch/vision/pull/5026/files#r762932579
def __init__(
self,
crop_size: Tuple[int, int],
scale_range: Tuple[float, float] = (-0.2, 0.5),
rescale_prob: float = 0.8,
scaling_type: str = "exponential",
interpolation_type: str = "bilinear",
) -> None:
super().__init__()
self.crop_size = crop_size
self.min_scale = scale_range[0]
self.max_scale = scale_range[1]
self.rescale_prob = rescale_prob
self.scaling_type = scaling_type
self._interpolation_mode_strategy = InterpolationStrategy(interpolation_type)
if self.scaling_type == "linear" and self.min_scale < 0:
raise ValueError("min_scale must be >= 0 for linear scaling")
def forward(
self,
images: T_STEREO_TENSOR,
disparities: Tuple[T_FLOW, T_FLOW],
masks: Tuple[T_MASK, T_MASK],
) -> Tuple[T_STEREO_TENSOR, Tuple[T_FLOW, T_FLOW], Tuple[T_MASK, T_MASK]]:
img_left, img_right = images
dsp_left, dsp_right = disparities
mask_left, mask_right = masks
INTERP_MODE = self._interpolation_mode_strategy()
# randomly sample scale
h, w = img_left.shape[-2:]
# Note: in original code, they use + 1 instead of + 8 for sparse datasets (e.g. Kitti)
# It shouldn't matter much
min_scale = max((self.crop_size[0] + 8) / h, (self.crop_size[1] + 8) / w)
# exponential scaling will draw a random scale in (min_scale, max_scale) and then raise
# 2 to the power of that random value. This final scale distribution will have a different
# mean and variance than a uniform distribution. Note that a scale of 1 will result in
# a rescaling of 2X the original size, whereas a scale of -1 will result in a rescaling
# of 0.5X the original size.
if self.scaling_type == "exponential":
scale = 2 ** torch.empty(1, dtype=torch.float32).uniform_(self.min_scale, self.max_scale).item()
# linear scaling will draw a random scale in (min_scale, max_scale)
elif self.scaling_type == "linear":
scale = torch.empty(1, dtype=torch.float32).uniform_(self.min_scale, self.max_scale).item()
scale = max(scale, min_scale)
new_h, new_w = round(h * scale), round(w * scale)
if torch.rand(1).item() < self.rescale_prob:
# rescale the images
img_left = F.resize(img_left, size=(new_h, new_w), interpolation=INTERP_MODE)
img_right = F.resize(img_right, size=(new_h, new_w), interpolation=INTERP_MODE)
resized_masks, resized_disparities = (), ()
for disparity, mask in zip(disparities, masks):
if disparity is not None:
if mask is None:
resized_disparity = F.resize(disparity, size=(new_h, new_w), interpolation=INTERP_MODE)
# rescale the disparity
resized_disparity = (
resized_disparity * torch.tensor([scale], device=resized_disparity.device)[:, None, None]
)
resized_mask = None
else:
resized_disparity, resized_mask = _resize_sparse_flow(
disparity, mask, scale_x=scale, scale_y=scale
)
resized_masks += (resized_mask,)
resized_disparities += (resized_disparity,)
else:
resized_disparities = disparities
resized_masks = masks
disparities = resized_disparities
masks = resized_masks
# Note: For sparse datasets (Kitti), the original code uses a "margin"
# See e.g. https://github.com/princeton-vl/RAFT/blob/master/core/utils/augmentor.py#L220:L220
# We don't, not sure if it matters much
y0 = torch.randint(0, img_left.shape[1] - self.crop_size[0], size=(1,)).item()
x0 = torch.randint(0, img_right.shape[2] - self.crop_size[1], size=(1,)).item()
img_left = F.crop(img_left, y0, x0, self.crop_size[0], self.crop_size[1])
img_right = F.crop(img_right, y0, x0, self.crop_size[0], self.crop_size[1])
if dsp_left is not None:
dsp_left = F.crop(disparities[0], y0, x0, self.crop_size[0], self.crop_size[1])
if dsp_right is not None:
dsp_right = F.crop(disparities[1], y0, x0, self.crop_size[0], self.crop_size[1])
cropped_masks = ()
for mask in masks:
if mask is not None:
mask = F.crop(mask, y0, x0, self.crop_size[0], self.crop_size[1])
cropped_masks += (mask,)
return ((img_left, img_right), (dsp_left, dsp_right), cropped_masks)
def _resize_sparse_flow(
flow: Tensor, valid_flow_mask: Tensor, scale_x: float = 1.0, scale_y: float = 0.0
) -> Tuple[Tensor, Tensor]:
# This resizes both the flow and the valid_flow_mask mask (which is assumed to be reasonably sparse)
# There are as-many non-zero values in the original flow as in the resized flow (up to OOB)
# So for example if scale_x = scale_y = 2, the sparsity of the output flow is multiplied by 4
h, w = flow.shape[-2:]
h_new = int(round(h * scale_y))
w_new = int(round(w * scale_x))
flow_new = torch.zeros(size=[1, h_new, w_new], dtype=flow.dtype)
valid_new = torch.zeros(size=[h_new, w_new], dtype=valid_flow_mask.dtype)
jj, ii = torch.meshgrid(torch.arange(w), torch.arange(h), indexing="xy")
ii_valid, jj_valid = ii[valid_flow_mask], jj[valid_flow_mask]
ii_valid_new = torch.round(ii_valid.to(float) * scale_y).to(torch.long)
jj_valid_new = torch.round(jj_valid.to(float) * scale_x).to(torch.long)
within_bounds_mask = (0 <= ii_valid_new) & (ii_valid_new < h_new) & (0 <= jj_valid_new) & (jj_valid_new < w_new)
ii_valid = ii_valid[within_bounds_mask]
jj_valid = jj_valid[within_bounds_mask]
ii_valid_new = ii_valid_new[within_bounds_mask]
jj_valid_new = jj_valid_new[within_bounds_mask]
valid_flow_new = flow[:, ii_valid, jj_valid]
valid_flow_new *= scale_x
flow_new[:, ii_valid_new, jj_valid_new] = valid_flow_new
valid_new[ii_valid_new, jj_valid_new] = valid_flow_mask[ii_valid, jj_valid]
return flow_new, valid_new.bool()
class Compose(torch.nn.Module):
def __init__(self, transforms: List[Callable]):
super().__init__()
self.transforms = transforms
@torch.inference_mode()
def forward(self, images, disparities, masks):
for t in self.transforms:
images, disparities, masks = t(images, disparities, masks)
return images, disparities, masks