-
Notifications
You must be signed in to change notification settings - Fork 7k
/
Copy pathtest_videoapi.py
312 lines (254 loc) · 12.6 KB
/
test_videoapi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import collections
import os
import urllib
import pytest
import torch
import torchvision
from pytest import approx
from torchvision.datasets.utils import download_url
from torchvision.io import _HAS_CPU_VIDEO_DECODER, VideoReader
# WARNING: these tests have been skipped forever on the CI because the video ops
# are never properly available. This is bad, but things have been in a terrible
# state for a long time already as we write this comment, and we'll hopefully be
# able to get rid of this all soon.
try:
import av
# Do a version test too
torchvision.io.video._check_av_available()
except ImportError:
av = None
VIDEO_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets", "videos")
CheckerConfig = ["duration", "video_fps", "audio_sample_rate"]
GroundTruth = collections.namedtuple("GroundTruth", " ".join(CheckerConfig))
def backends():
backends_ = ["video_reader"]
if av is not None:
backends_.append("pyav")
return backends_
def fate(name, path="."):
"""Download and return a path to a sample from the FFmpeg test suite.
See the `FFmpeg Automated Test Environment <https://www.ffmpeg.org/fate.html>`_
"""
file_name = name.split("/")[1]
download_url("http://fate.ffmpeg.org/fate-suite/" + name, path, file_name)
return os.path.join(path, file_name)
test_videos = {
"RATRACE_wave_f_nm_np1_fr_goo_37.avi": GroundTruth(duration=2.0, video_fps=30.0, audio_sample_rate=None),
"SchoolRulesHowTheyHelpUs_wave_f_nm_np1_ba_med_0.avi": GroundTruth(
duration=2.0, video_fps=30.0, audio_sample_rate=None
),
"TrumanShow_wave_f_nm_np1_fr_med_26.avi": GroundTruth(duration=2.0, video_fps=30.0, audio_sample_rate=None),
"v_SoccerJuggling_g23_c01.avi": GroundTruth(duration=8.0, video_fps=29.97, audio_sample_rate=None),
"v_SoccerJuggling_g24_c01.avi": GroundTruth(duration=8.0, video_fps=29.97, audio_sample_rate=None),
"R6llTwEh07w.mp4": GroundTruth(duration=10.0, video_fps=30.0, audio_sample_rate=44100),
"SOX5yA1l24A.mp4": GroundTruth(duration=11.0, video_fps=29.97, audio_sample_rate=48000),
"WUzgd7C1pWA.mp4": GroundTruth(duration=11.0, video_fps=29.97, audio_sample_rate=48000),
}
@pytest.mark.skipif(_HAS_CPU_VIDEO_DECODER is False, reason="Didn't compile with ffmpeg")
class TestVideoApi:
@pytest.mark.skipif(av is None, reason="PyAV unavailable")
@pytest.mark.parametrize("test_video", test_videos.keys())
@pytest.mark.parametrize("backend", backends())
def test_frame_reading(self, test_video, backend):
torchvision.set_video_backend(backend)
full_path = os.path.join(VIDEO_DIR, test_video)
with av.open(full_path) as av_reader:
if av_reader.streams.video:
av_frames, vr_frames = [], []
av_pts, vr_pts = [], []
# get av frames
for av_frame in av_reader.decode(av_reader.streams.video[0]):
av_frames.append(torch.tensor(av_frame.to_rgb().to_ndarray()).permute(2, 0, 1))
av_pts.append(av_frame.pts * av_frame.time_base)
# get vr frames
video_reader = VideoReader(full_path, "video")
for vr_frame in video_reader:
vr_frames.append(vr_frame["data"])
vr_pts.append(vr_frame["pts"])
# same number of frames
assert len(vr_frames) == len(av_frames)
assert len(vr_pts) == len(av_pts)
# compare the frames and ptss
for i in range(len(vr_frames)):
assert float(av_pts[i]) == approx(vr_pts[i], abs=0.1)
mean_delta = torch.mean(torch.abs(av_frames[i].float() - vr_frames[i].float()))
# on average the difference is very small and caused
# by decoding (around 1%)
# TODO: asses empirically how to set this? atm it's 1%
# averaged over all frames
assert mean_delta.item() < 2.55
del vr_frames, av_frames, vr_pts, av_pts
# test audio reading compared to PYAV
with av.open(full_path) as av_reader:
if av_reader.streams.audio:
av_frames, vr_frames = [], []
av_pts, vr_pts = [], []
# get av frames
for av_frame in av_reader.decode(av_reader.streams.audio[0]):
av_frames.append(torch.tensor(av_frame.to_ndarray()).permute(1, 0))
av_pts.append(av_frame.pts * av_frame.time_base)
av_reader.close()
# get vr frames
video_reader = VideoReader(full_path, "audio")
for vr_frame in video_reader:
vr_frames.append(vr_frame["data"])
vr_pts.append(vr_frame["pts"])
# same number of frames
assert len(vr_frames) == len(av_frames)
assert len(vr_pts) == len(av_pts)
# compare the frames and ptss
for i in range(len(vr_frames)):
assert float(av_pts[i]) == approx(vr_pts[i], abs=0.1)
max_delta = torch.max(torch.abs(av_frames[i].float() - vr_frames[i].float()))
# we assure that there is never more than 1% difference in signal
assert max_delta.item() < 0.001
@pytest.mark.parametrize("stream", ["video", "audio"])
@pytest.mark.parametrize("test_video", test_videos.keys())
@pytest.mark.parametrize("backend", backends())
def test_frame_reading_mem_vs_file(self, test_video, stream, backend):
torchvision.set_video_backend(backend)
full_path = os.path.join(VIDEO_DIR, test_video)
reader = VideoReader(full_path)
reader_md = reader.get_metadata()
if stream in reader_md:
# Test video reading from file vs from memory
vr_frames, vr_frames_mem = [], []
vr_pts, vr_pts_mem = [], []
# get vr frames
video_reader = VideoReader(full_path, stream)
for vr_frame in video_reader:
vr_frames.append(vr_frame["data"])
vr_pts.append(vr_frame["pts"])
# get vr frames = read from memory
f = open(full_path, "rb")
fbytes = f.read()
f.close()
video_reader_from_mem = VideoReader(fbytes, stream)
for vr_frame_from_mem in video_reader_from_mem:
vr_frames_mem.append(vr_frame_from_mem["data"])
vr_pts_mem.append(vr_frame_from_mem["pts"])
# same number of frames
assert len(vr_frames) == len(vr_frames_mem)
assert len(vr_pts) == len(vr_pts_mem)
# compare the frames and ptss
for i in range(len(vr_frames)):
assert vr_pts[i] == vr_pts_mem[i]
mean_delta = torch.mean(torch.abs(vr_frames[i].float() - vr_frames_mem[i].float()))
# on average the difference is very small and caused
# by decoding (around 1%)
# TODO: asses empirically how to set this? atm it's 1%
# averaged over all frames
assert mean_delta.item() < 2.55
del vr_frames, vr_pts, vr_frames_mem, vr_pts_mem
else:
del reader, reader_md
@pytest.mark.parametrize("test_video,config", test_videos.items())
@pytest.mark.parametrize("backend", backends())
def test_metadata(self, test_video, config, backend):
"""
Test that the metadata returned via pyav corresponds to the one returned
by the new video decoder API
"""
torchvision.set_video_backend(backend)
full_path = os.path.join(VIDEO_DIR, test_video)
reader = VideoReader(full_path, "video")
reader_md = reader.get_metadata()
assert config.video_fps == approx(reader_md["video"]["fps"][0], abs=0.0001)
assert config.duration == approx(reader_md["video"]["duration"][0], abs=0.5)
@pytest.mark.parametrize("test_video", test_videos.keys())
@pytest.mark.parametrize("backend", backends())
def test_seek_start(self, test_video, backend):
torchvision.set_video_backend(backend)
full_path = os.path.join(VIDEO_DIR, test_video)
video_reader = VideoReader(full_path, "video")
num_frames = 0
for _ in video_reader:
num_frames += 1
# now seek the container to 0 and do it again
# It's often that starting seek can be inprecise
# this way and it doesn't start at 0
video_reader.seek(0)
start_num_frames = 0
for _ in video_reader:
start_num_frames += 1
assert start_num_frames == num_frames
# now seek the container to < 0 to check for unexpected behaviour
video_reader.seek(-1)
start_num_frames = 0
for _ in video_reader:
start_num_frames += 1
assert start_num_frames == num_frames
@pytest.mark.parametrize("test_video", test_videos.keys())
@pytest.mark.parametrize("backend", ["video_reader"])
def test_accurateseek_middle(self, test_video, backend):
torchvision.set_video_backend(backend)
full_path = os.path.join(VIDEO_DIR, test_video)
stream = "video"
video_reader = VideoReader(full_path, stream)
md = video_reader.get_metadata()
duration = md[stream]["duration"][0]
if duration is not None:
num_frames = 0
for _ in video_reader:
num_frames += 1
video_reader.seek(duration / 2)
middle_num_frames = 0
for _ in video_reader:
middle_num_frames += 1
assert middle_num_frames < num_frames
assert middle_num_frames == approx(num_frames // 2, abs=1)
video_reader.seek(duration / 2)
frame = next(video_reader)
lb = duration / 2 - 1 / md[stream]["fps"][0]
ub = duration / 2 + 1 / md[stream]["fps"][0]
assert (lb <= frame["pts"]) and (ub >= frame["pts"])
def test_fate_suite(self):
# TODO: remove the try-except statement once the connectivity issues are resolved
try:
video_path = fate("sub/MovText_capability_tester.mp4", VIDEO_DIR)
except (urllib.error.URLError, ConnectionError) as error:
pytest.skip(f"Skipping due to connectivity issues: {error}")
vr = VideoReader(video_path)
metadata = vr.get_metadata()
assert metadata["subtitles"]["duration"] is not None
os.remove(video_path)
@pytest.mark.skipif(av is None, reason="PyAV unavailable")
@pytest.mark.parametrize("test_video,config", test_videos.items())
@pytest.mark.parametrize("backend", backends())
def test_keyframe_reading(self, test_video, config, backend):
torchvision.set_video_backend(backend)
full_path = os.path.join(VIDEO_DIR, test_video)
av_reader = av.open(full_path)
# reduce streams to only keyframes
av_stream = av_reader.streams.video[0]
av_stream.codec_context.skip_frame = "NONKEY"
av_keyframes = []
vr_keyframes = []
if av_reader.streams.video:
# get all keyframes using pyav. Then, seek randomly into video reader
# and assert that all the returned values are in AV_KEYFRAMES
for av_frame in av_reader.decode(av_stream):
av_keyframes.append(float(av_frame.pts * av_frame.time_base))
if len(av_keyframes) > 1:
video_reader = VideoReader(full_path, "video")
for i in range(1, len(av_keyframes)):
seek_val = (av_keyframes[i] + av_keyframes[i - 1]) / 2
data = next(video_reader.seek(seek_val, True))
vr_keyframes.append(data["pts"])
data = next(video_reader.seek(config.duration, True))
vr_keyframes.append(data["pts"])
assert len(av_keyframes) == len(vr_keyframes)
# NOTE: this video gets different keyframe with different
# loaders (0.333 pyav, 0.666 for us)
if test_video != "TrumanShow_wave_f_nm_np1_fr_med_26.avi":
for i in range(len(av_keyframes)):
assert av_keyframes[i] == approx(vr_keyframes[i], rel=0.001)
def test_src(self):
with pytest.raises(ValueError, match="src cannot be empty"):
VideoReader(src="")
with pytest.raises(ValueError, match="src must be either string"):
VideoReader(src=2)
with pytest.raises(TypeError, match="unexpected keyword argument"):
VideoReader(path="path")
if __name__ == "__main__":
pytest.main([__file__])