-
Notifications
You must be signed in to change notification settings - Fork 7k
/
Copy pathpreprocess-bench.py
65 lines (56 loc) · 2.3 KB
/
preprocess-bench.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import argparse
import os
from timeit import default_timer as timer
import torch
import torch.utils.data
import torchvision
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from torch.utils.model_zoo import tqdm
parser = argparse.ArgumentParser(description="PyTorch ImageNet Training")
parser.add_argument("--data", metavar="PATH", required=True, help="path to dataset")
parser.add_argument(
"--nThreads", "-j", default=2, type=int, metavar="N", help="number of data loading threads (default: 2)"
)
parser.add_argument(
"--batchSize", "-b", default=256, type=int, metavar="N", help="mini-batch size (1 = pure stochastic) Default: 256"
)
parser.add_argument("--accimage", action="store_true", help="use accimage")
if __name__ == "__main__":
args = parser.parse_args()
if args.accimage:
torchvision.set_image_backend("accimage")
print("Using {}".format(torchvision.get_image_backend()))
# Data loading code
transform = transforms.Compose(
[
transforms.RandomSizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
]
)
traindir = os.path.join(args.data, "train")
valdir = os.path.join(args.data, "val")
train = datasets.ImageFolder(traindir, transform)
val = datasets.ImageFolder(valdir, transform)
train_loader = torch.utils.data.DataLoader(
train, batch_size=args.batchSize, shuffle=True, num_workers=args.nThreads
)
train_iter = iter(train_loader)
start_time = timer()
batch_count = 20 * args.nThreads
with tqdm(total=batch_count) as pbar:
for _ in tqdm(range(batch_count)):
pbar.update(1)
batch = next(train_iter)
end_time = timer()
print(
"Performance: {dataset:.0f} minutes/dataset, {batch:.1f} ms/batch,"
" {image:.2f} ms/image {rate:.0f} images/sec".format(
dataset=(end_time - start_time) * (float(len(train_loader)) / batch_count / 60.0),
batch=(end_time - start_time) / float(batch_count) * 1.0e3,
image=(end_time - start_time) / (batch_count * args.batchSize) * 1.0e3,
rate=(batch_count * args.batchSize) / (end_time - start_time),
)
)